Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giao lưu HSG Toán 7 lần 2 năm 2023 - 2024 cụm CM số 6 Nga Sơn - Thanh Hóa

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi giao lưu học sinh giỏi môn Toán 7 lần 2 năm học 2023 – 2024 cụm chuyên môn số 6 huyện Nga Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 18 tháng 01 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề giao lưu HSG Toán 7 lần 2 năm 2023 – 2024 cụm CM số 6 Nga Sơn – Thanh Hóa : + Bác An chia một khu đất thành 3 mảnh hình chữ nhật có diện tích bằng nhau cho ba người con trai. Biết rằng chiều rộng của các mảnh đất lần lượt là 6m, 8m, 10m. Tổng chiều dài các mảnh đất là 47m. Tính diện tích khu đất đó. + Cho tam giác ABC nhọn, kẻ BE vuông góc với AC tại E (E thuộc AC), kẻ CF vuông góc với AB tại F (F thuộc AB). Gọi M là trung điểm của BC. Trên tia đối của tia MF lấy điểm D sao cho MF MD. a) Chứng minh CD BF và CD BF. b) Lấy điểm P bất kì nằm giữa B và F trên tia đối của tia MP lấy điểm Q sao cho MP MQ. Chứng minh DQC thẳng hàng. c) Trên tia đối của tia EF lấy điểm K trên tia đối của tia FE lấy điểm I sao cho EK FI. Chứng minh tam giác MIK cân. + Cho ba số chính phương x, y, z. Chứng minh rằng A = (x – y)(y – z)(z – x) chia hết cho 12.

Nguồn: toanmath.com

Đọc Sách

Tuyển tập 150 đề thi học sinh giỏi lớp 7 môn Toán Hồ Khắc Vũ
Nội dung Tuyển tập 150 đề thi học sinh giỏi lớp 7 môn Toán Hồ Khắc Vũ Bản PDF - Nội dung bài viết Tuyển tập 150 đề thi học sinh giỏi lớp 7 môn Toán Hồ Khắc Vũ Tuyển tập 150 đề thi học sinh giỏi lớp 7 môn Toán Hồ Khắc Vũ Tài liệu "Tuyển tập 150 đề thi học sinh giỏi lớp 7 môn Toán" bao gồm 157 trang với 150 đề thi được lựa chọn từ các trường THCS, cơ sở GD và ĐT trên khắp cả nước. Tài liệu được tổng hợp và biên soạn bởi thầy Hồ Khắc Vũ.
Đề thi học sinh giỏi lớp 7 môn Toán năm 2016 2017 phòng GD ĐT Giao Thủy Nam Định
Nội dung Đề thi học sinh giỏi lớp 7 môn Toán năm 2016 2017 phòng GD ĐT Giao Thủy Nam Định Bản PDF xin giới thiệu đến quý thầy cô và các em học sinh lớp 7 đề thi học sinh giỏi môn Toán năm 2016 - 2017 của phòng GD&ĐT Giao Thủy - Nam Định. Đề thi này bao gồm đáp án và lời giải chi tiết cho các câu hỏi sau:1. Trong tam giác ABC, điểm O là trung điểm của đoạn thẳng BC. Kẻ đường thẳng BD vuông góc với AC tại điểm D, và kẻ đường thẳng CE vuông góc với AB tại điểm E. a. Chứng minh rằng OD || BC.b. Trên tia đối của tia DE, chọn điểm N; trên tia đối của tia ED, chọn điểm M sao cho DN = EM. Chứng minh rằng tam giác OMN là tam giác cân.2. Cho các số nguyên dương a, b, c, d, e chia hết cho 2. Chứng minh rằng a + b + c + d + e là số hợp.3. Cho tỷ lệ thức: a/b = c/d. Chứng minh rằng a^2/b^2 = c^2/d^2 (với điều kiện các tỷ lệ thức đều khác không).Hi vọng đề thi này sẽ giúp các em học sinh lớp 7 rèn luyện và củng cố kiến thức Toán một cách hiệu quả. Chúc quý thầy cô và các em thành công!
Đề thi HSG lớp 7 môn Toán năm 2016 2017 phòng GD ĐT Hoằng Hóa Thanh Hóa
Nội dung Đề thi HSG lớp 7 môn Toán năm 2016 2017 phòng GD ĐT Hoằng Hóa Thanh Hóa Bản PDF - Nội dung bài viết Giới thiệu đề thi HSG Toán lớp 7 năm 2016-2017 phòng GD&ĐT Hoằng Hóa Thanh Hóa Giới thiệu đề thi HSG Toán lớp 7 năm 2016-2017 phòng GD&ĐT Hoằng Hóa Thanh Hóa Chào các thầy cô giáo và các em học sinh lớp 7! Sytu xin chia sẻ đến quý vị đáp án và lời giải chi tiết của đề thi HSG Toán lớp 7 năm 2016 – 2017 tổ chức tại phòng GD&ĐT Hoằng Hóa – Thanh Hóa vào ngày 21 tháng 02 năm 2017. Hãy cùng Sytu tìm hiểu và giải quyết mỗi câu hỏi một cách cẩn thận để đạt kết quả tốt nhất trong kỳ thi này nhé!
Đề thi HSG huyện lớp 7 môn Toán năm 2013 2014 phòng GD ĐT Việt Yên Bắc Giang
Nội dung Đề thi HSG huyện lớp 7 môn Toán năm 2013 2014 phòng GD ĐT Việt Yên Bắc Giang Bản PDF - Nội dung bài viết Đề thi HSG huyện Toán lớp 7 năm 2013 - 2014 phòng GD&ĐT Việt Yên - Bắc Giang Đề thi HSG huyện Toán lớp 7 năm 2013 - 2014 phòng GD&ĐT Việt Yên - Bắc Giang Đề thi HSG huyện Toán lớp 7 năm 2013 - 2014 của phòng GD&ĐT Việt Yên - Bắc Giang đã được công bố, bao gồm cả đáp án và lời giải chi tiết. Kỳ thi diễn ra vào ngày 12 tháng 04 năm 2014, là cơ hội để các học sinh thử sức và cải thiện kiến thức của mình.