Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG lớp 9 môn Toán cấp huyện năm 2022 2023 phòng GD ĐT Thanh Sơn Phú Thọ

Nội dung Đề HSG lớp 9 môn Toán cấp huyện năm 2022 2023 phòng GD ĐT Thanh Sơn Phú Thọ Bản PDF Dưới đây là thông tin về Đề HSG Toán lớp 9 cấp huyện năm 2022 - 2023 của phòng Giáo dục và Đào tạo huyện Thanh Sơn, tỉnh Phú Thọ:

Đề thi bao gồm 40% câu hỏi trắc nghiệm và 60% câu hỏi tự luận, thời gian làm bài là 150 phút. Đề thi được thiết kế với đáp án và lời giải chi tiết, giúp học sinh ôn tập cũng như tự kiểm tra kỹ năng Toán của mình.

Một số câu hỏi đặc biệt trong đề thi bao gồm:
- Về tam giác vuông ABC, với đường cao AH và tia phân giác của góc C cắt AB và BD. Học sinh cần áp dụng kiến thức về tam giác, đường cao, và tia phân giác để giải quyết vấn đề.
- Về bài toán mua kem, học sinh cần tính toán số tiền mua kem sau khuyến mại dựa trên thông tin về giảm giá từ ly kem thứ 5.
- Về tam giác ABC nội tiếp đường tròn (O; R), học sinh cần chứng minh các tính chất của tứ giác BHCK, tính AP và AQ, cũng như chứng minh đường thẳng đi qua H và song song với AO.

Đề HSG Toán lớp 9 cấp huyện năm 2022 - 2023 là cơ hội để học sinh thể hiện kiến thức và kỹ năng của mình trong môn Toán. Dù khó khăn, nhưng qua việc giải các bài toán trong đề thi này, học sinh sẽ có cơ hội rèn luyện và phát triển khả năng logic, suy luận và tư duy toán học của mình. Chúc các em ôn tập tốt và đạt kết quả cao trong kì thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề HSG Toán 9 vòng 2 năm 2022 - 2023 phòng GDĐT Gia Lâm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 vòng 2 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Gia Lâm, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 23 tháng 11 năm 2022.
Đề HSG Toán 9 năm 2022 - 2023 trường THPT chuyên Lam Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng học sinh giỏi môn Toán 9 năm học 2022 – 2023 trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào Chủ Nhật ngày 27 tháng 11 năm 2022. Trích dẫn Đề HSG Toán 9 năm 2022 – 2023 trường THPT chuyên Lam Sơn – Thanh Hóa : + Hai số nguyên dương a, b được gọi là “cân bằng” nếu hai số này có cùng tập ước nguyên tố (ví dụ hai số 10 và 20 là cân bằng vì cùng có tập ước nguyên tố là {2;5}). Tìm tất cả các số nguyên dương n sao cho n và n + 6 là hai số “cân bằng” và n chia hết cho 4. + Cho đường tròn (O;R), đường kính AB cố định. Một điểm C di chuyển trên (O) (C khác A, B). Gọi I là tâm đường tròn nội tiếp tam giác ABC. Vẽ CH vuông góc với AB tại H. 1. Vẽ CM song song với BI (M thuộc AI). Lấy điểm F thuộc AB sao cho AC = AF. Chứng minh CM vuông góc với FM. 2. Lấy điểm P trên tia đối của tia AC sao cho AP = AC. Gọi Q là trung điểm của HB, đường thẳng PH cắt CQ tại J. Chứng minh ACH = QJB. 3. Gọi K là tâm đường tròn nội tiếp tam giác AHC; đường thẳng CK cắt AB tại E. Hãy tìm vị trí điểm C trên đường tròn (O) sao cho diện tích tam giác CEF lớn nhất.
Đề chọn đội tuyển thi HSG tỉnh Toán 9 năm 2022 - 2023 phòng GDĐT Yên Thành - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn đội tuyển dự thi học sinh giỏi cấp tỉnh môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Yên Thành, tỉnh Nghệ An; đề thi gồm 01 trang với 05 bài toán hình thức tự luận, thời gian làm bài 150 phút (không kể thời gian giao đề); đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề chọn đội tuyển thi HSG tỉnh Toán 9 năm 2022 – 2023 phòng GD&ĐT Yên Thành – Nghệ An : + Cho ABC nhọn, các đường cao BE và CF cắt nhau tại H. Trên tia đối của tia EB lấy điểm P, trên tia đối của tia FC lấy điểm Q sao cho APC = AQB = 90°. a) Chứng minh: APQ cân tại A b) Gọi I là trung điểm của BC. Đường thẳng qua H và vuông góc với HI cắt AB, AC lần lượt tại M và N. Chứng minh: HM = HN c) Gọi O là giao điểm các đường phân giác của ABC. Chứng minh. + Cho hình chữ nhật và 2022 đường thẳng. Mỗi đường thẳng đều cắt hai cạnh đối diện của hình chữ nhật và chia hình chữ nhật thành hai tứ giác có tỉ lệ diện tích là 2022 : 2023. Chứng minh rằng trong số 2022 đường thẳng trên có ít nhất 506 đường thẳng cùng đi qua một điểm.
Đề học sinh giỏi Toán 9 năm 2022 - 2023 phòng GDĐT Hoàng Mai - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp thị xã môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thị xã Hoàng Mai, tỉnh Nghệ An. Trích dẫn Đề học sinh giỏi Toán 9 năm 2022 – 2023 phòng GD&ĐT Hoàng Mai – Nghệ An : + Cho tam giác ABC có 3 góc nhọn, vẽ đường cao AD và BE. Gọi H là trực tâm của tam giác ABC. a) Chứng minh: AD.DH = DB.DC và tanB.tanC = AD/HD. b) Gọi a, b, c lần lượt là độ dài các cạnh BC, CA, AB của tam giác ABC. Chứng minh rằng. + Cho tam giác ABC vuông cân tại A và M là điểm di động trên đường thẳng BC (M khác B, C). Hình chiếu của M trên các đường thẳng AB và AC tương ứng là H và K. Gọi I là giao điểm các đường thẳng CH và BK. Chứng minh rằng các đường thẳng MI luôn đi qua một điểm cố định. + Cho tam giác ABC có độ dài các cạnh là a, b, c sao cho thỏa mãn hệ thức 20bc + 11ac + 1982ab = 2022. Tìm giá trị nhỏ nhất của biểu thức M (trong đó p là nửa chu vi tam giác ABC).