Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các bài toán vận dụng cao dãy số - Nguyễn Minh Tuấn, Nguyễn Nhật Linh

giới thiệu đến bạn đọc chuyên đề CÁC BÀI TOÁN VẬN DỤNG CAO DÃY SỐ do các tác giả Nguyễn Minh Tuấn và Nguyễn Nhật Linh (thành viên trong nhóm Chinh Phục Olympic Toán) sưu tầm và biên soạn. Tài liệu gồm 85 trang được biên soạn với mục đích chào xuân năm mới Tết n cũng như là món quà cám ơn đối với các bạn đã theo dõi và ủng hộ nhóm tác giả trong thời gian vừa qua. Như các bạn đã biết, trước kia thì chủ đề dãy số (thuộc chương trình Đại số và Giải tích 11) không phải là một phần quan trọng trong kì thi Trung học Phổ thông Quốc Gia môn Toán, nhưng trong những năm gần đây vấn đề này đã được các trường kết nối với các mảng kiến thức khác như hàm số, mũ và logarit, nguyên hàm và tích phân … yêu cầu chúng ta cần phải tìm hiểu kỹ, sâu và rộng thì mới có thể giải quyết được chúng, điều đó gây ra không ít những bỡ ngỡ, những sự lúng túng cho các bạn lần đầu gặp những bài như thế. Vì vậy trong chủ đề này, nhóm tác giả và bạn đọc sẽ cùng tìm hiểu các bài toán liên quan tới chúng, hy vọng phần nào sẽ giúp bạn đọc có kinh nghiệm và hướng giải quyết khi gặp các bài toán dạng này. Tài liệu tuyển tập hơn 100 bài toán vận dụng cao dãy số có đáp án và lời giải chi tiết với nhiều dạng toán khác nhau chắc hẳn sẽ mang tới cho bạn đọc một cái nhìn khác và mới lạ hơn về chủ đề dãy số. Hy vọng thông qua ebook này, bạn đọc sẽ học thêm được nhiều điều và rút ra được kinh nghiệm cho bản thân trong việc giải quyết các dạng toán vận dụng cao dãy số mà nhóm tác giả đưa ra và nhiều dạng toán có liên quan khác. [ads] Trích dẫn một số bài toán trong tài liệu các bài toán vận dụng cao dãy số – Nguyễn Minh Tuấn, Nguyễn Nhật Linh: + Cho dãy số (un) có số hạng đầu tiên u1 ≠ 1 thỏa mãn đẳng thức sau: (log_2 5u1)^2 + (log_2 7u1)^2 = (log_2 5)^2 + (log_2 7)^2 và un+1 = 7un với mọi n ≥ 1. Giá trị nhỏ nhất của n để un ≥ 1111111 bằng? A. 11. B. 8. C. 9. D. 10. + Tam giác mà ba đỉnh của nó là ba trung điểm ba cạnh của tam giác ABC được gọi là tam giác trung bình của tam giác ABC.Ta xây dựng dãy các tam giác A1B1C1, A2B2C2, A3B3C3 … sao cho A1B1C1 là một tam giác đều cạnh bằng 3 và với mỗi số nguyên dương n ≥ 2, tam giác AnBnCn là tam giác trung bình của tam giác An-1Bn-1Cn-1. Với mỗi số nguyên dương n, kí hiệu Sn tương ứng là diện tích hình tròn ngoại tiếp tam giác AnBnCn. Tính tổng S = S1 + S2 + … + Sn + …? + Gọi q là công bội của một cấp số nhân, biết tổng ba số hạng đầu bằng 16 4/9, đồng thời theo thứ tự,  chúng là số hạng thứ nhất, thứ tư và thứ tám của một cấp số cộng. Hỏi q thuộc khoảng nào sau đây?

Nguồn: toanmath.com

Đọc Sách

Tài liệu chủ đề phương pháp quy nạp toán học
Tài liệu gồm 10 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề phương pháp quy nạp toán học, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 3. I. KIẾN THỨC TRỌNG TÂM 1) Để chứng minh một mệnh đề P(n) đúng với mọi n N* thì ta thực hiện theo các bước sau đây: + Kiểm tra mệnh đề đúng với n 1. + Giả sử mệnh đề đã đúng với n k đưa ra được biểu thức của P k ta gọi là giả thiết quy nạp. + Với giả thiết P k đã đúng, ta chứng minh mệnh đề cũng đúng với n k 1. 2) Để chứng minh một mệnh đề P(n) đúng với mọi n ≥ p (p là số một số tự nhiên) thì ta thực hiện như sau: + Kiểm tra mệnh đề đúng với n p. + Giả sử mệnh đề đã đúng với n k đưa ra được biểu thức của P k ta gọi là giả thiết quy nạp. + Với giả thiết P k đã đúng, ta chứng minh mệnh đề cũng đúng với n k 1. II. HỆ THỐNG VÍ DỤ MINH HỌA
Tài liệu ôn thi HSG Quốc gia môn Toán chủ đề dãy số - Nguyễn Hoàng Vinh
Tài liệu gồm 91 trang, được biên soạn bởi tác giả Nguyễn Hoàng Vinh, hướng dẫn ôn thi HSG Quốc gia môn Toán chủ đề dãy số. Phần 1 : 1. Tính giới hạn theo định nghĩa, định lý kẹp, định lý Weierstrass, dùng công thức tổng quát. 2. Các tính chất, đánh giá xung quanh dãy số. Phần 2 : Định nghĩa giới hạn, tiêu chuẩn Cauchy và bài tập lý thuyết. Phần 3 : Các bài toán về giới hạn và đánh giá trên dãy số.
Phân loại và phương pháp giải bài tập dãy số, cấp số cộng và cấp số nhân
Tài liệu gồm 65 trang, được biên soạn bởi thầy giáo Trần Đình Cư, tóm tắt lý thuyết, phân loại và phương pháp giải bài tập dãy số, cấp số cộng và cấp số nhân, giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 3 (Toán 11). BÀI 1 . PHƯƠNG PHÁP QUY NẠP TOÁN HỌC. Dạng 1. Chứng minh đẳng thức. Dạng 2. Chứng minh bất đẳng thức. Dạng 3. Chứng minh một tính chất. Dạng 4. Một số bài toán khác. BÀI 2 . DÃY SỐ. Dạng 1. Tìm số hạng của dãy số. Dạng 2. Tính tăng giảm và bị chặn của dãy số. BÀI 3 . CẤP SỐ CỘNG. Dạng 1. Xác định cấp số cộng, công sai và số hạng của cấp số cộng. Dạng 2. Tính tổng các số hạng trong một cấp số cộng. Dạng 3. Chứng minh một hệ thức trong cấp số cộng. Dạng 4. Giải phương trình (tìm x trong cấp số cộng). BÀI 4 . CẤP SỐ NHÂN. Dạng 1. Xác định cấp số nhân, số hạng, công bội của cấp số nhân. Dạng 2. Tính tổng của cấp số nhân. Dạng 3. Các bài toán thực tế.
Phương pháp quy nạp với các bài toán phổ thông - Nguyễn Mỹ Lệ
Tài liệu gồm 112 trang, là luận văn thạc sĩ khoa học của tác giả Nguyễn Thị Mỹ Lệ (Đại học Khoa học Tự Nhiên, Đại học Quốc gia Hà Nội), đưa ra cái nhìn tổng quan về phương pháp quy nạp toán học, từ nguyên lý và các hình thức của phương pháp đến những bài tập áp dụng trong các phân môn khác nhau. 1 Kiến thức cơ bản về phương pháp quy nạp toán học. 1.1 Nguồn gốc của phương pháp quy nạp toán học. 1.2 Quy nạp và quy nạp toán học. 1.3 Giới thiệu phương pháp quy nạp toán học. 1.3.1 Nguyên lí quy nạp toán học. 1.3.2 Phương pháp quy nạp toán học. 1.3.3 Các ví dụ. 1.4 Một số hình thức của phương pháp quy nạp toán học. 1.4.1 Hình thức quy nạp chuẩn tắc. 1.4.2 Hình thức quy nạp nhảy bước. 1.4.3 Hình thức quy nạp kép. 2 Ứng dụng phương pháp quy nạp toán học trong giải toán. 2.1 Phương pháp quy nạp toán học trong các bài toán số học, đại số, giải tích. 2.1.1 Một số bài toán chia hết và chia có dư. 2.1.2 Một số bài toán về dãy số. 2.1.3 Một số bài toán về tính tổng và chứng minh đẳng thức. 2.1.4 Một số bài toán chứng minh bất đẳng thức. 2.2 Phương pháp quy nạp toán học trong các bài toán hình học. 2.2.1 Tính toán bằng quy nạp. 2.2.2 Chứng minh bằng quy nạp. 2.2.3 Dựng hình bằng quy nạp. 2.2.4 Quy nạp với bài toán quỹ tích. 2.3 Phương pháp quy nạp toán học trong các bài toán rời rạc khác. 3 Một số đề thi tham khảo. 3.1 Đề thi Olympic toán học quốc tế. 3.2 Đề thi vô địch các nước và khu vực.