Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG lớp 12 môn Toán lần 2 năm 2022 2023 trường THPT Quảng Xương 2 Thanh Hóa

Nội dung Đề HSG lớp 12 môn Toán lần 2 năm 2022 2023 trường THPT Quảng Xương 2 Thanh Hóa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng học sinh giỏi cấp tỉnh môn Toán lớp 12 lần 2 năm học 2022 – 2023 trường THPT Quảng Xương 2, tỉnh Thanh Hóa; đề thi hình thức trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề HSG Toán lớp 12 lần 2 năm 2022 – 2023 trường THPT Quảng Xương 2 – Thanh Hóa : + Cho hình chóp S ABC có đáy ABC là tam giác vuông. Mặt bên (SAB) là tam giác đều và nằm trong mặt phẳng vuông góc với mặt đáy. Mặt phẳng (β) đi qua trung điểm của BC và vuông góc với SC. Thiết diện của hình chóp S ABC cắt bởi (β) là A. Hình thang cân. B. Tam giác vuông. C. Tam giác đều. D. Tam giác cân. + Một bể nước lớn của một khu công nghiệp có phần chứa nước là một khối nón đỉnh S phía dưới (hình vẽ), đường sinh SA m 27. Có một lần lúc bể nước chứa đầy, người ta phát hiện nước trong bể không đạt yêu cầu về vệ sinh nên lãnh đạo khu công nghiệp cho thoát hết nước để làm vệ sinh bể chứa. Công nhân cho thoát nước ba lần qua một lỗ ở đỉnh S. Lần thức nhất khi mực nước tới điểm M thuộc SA thì dừng, lần thứ hai khi mực nước tới điểm N SA thì dừng, lần thứ ba mới thoát hết nước. Biết lượng nước mỗi lần thoát là bằng nhau. Tính độ dài đoạn MN. + Bác Hoa đem gửi tiết kiệm số tiền 400 triệu đồng ở hai loại kỳ hạn khác nhau. Bác gửi 250 triệu đồng theo kỳ hạn 3 tháng với lãi suất 1,1%/1 quý. Số tiền còn lại bác gửi theo kỳ hạn 1 tháng với lãi suất x%/1 tháng. Biết rằng nếu không rút lãi thì số lãi sẽ được gộp vào gốc để tính lãi cho kỳ hạn tiếp theo. Tính x (làm tròn đến chữ số thứ hai sau dấu phẩy), biết rằng sau một năm, số tiền gốc và lãi bác Hoa thu được là 425.250.000 đồng. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn học sinh giỏi vòng trường môn Toán trường THPT Chu Văn An Gia Lai
Nội dung Đề thi chọn học sinh giỏi vòng trường môn Toán trường THPT Chu Văn An Gia Lai Bản PDF Đề thi chọn học sinh giỏi vòng trường môn Toán trường THPT Chu Văn An – Gia Lai gồm 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi : + Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC cân tại A, có đỉnh A(-1; 4) và các điểm B, C thuộc đường thẳng Δ: x – y – 4 = 0. Xác định tọa độ điểm B và C, biết diện tích tam giác ABC bằng 18. [ads] + Cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật có AB = a, BC = b, SA = SB = SC = SD = c. K là hình chiếu vuông góc của P xuống AC. a/ Tính độ dài đoạn vuông góc chung của SA và BK. b/ Gọi M, N lần lượt là trung điểm của đoạn thẳng AK và CD. Chứng minh: Các đường thẳng BM và MN vuông góc nhau. + Cho tập A = {1; 2; 3; 4; 5; 6; 7; 8; 9}. Lập ngẫu nhiên một số có 3 chữ số khác nhau với các chữ số chọn từ tập A. Tính xác suất để số lập được chia hết cho 6. File WORD (dành cho quý thầy, cô):
Đề thi chọn HSG tỉnh lớp 12 môn Toán năm học 2017 2018 sở GD và ĐT Hải Dương
Nội dung Đề thi chọn HSG tỉnh lớp 12 môn Toán năm học 2017 2018 sở GD và ĐT Hải Dương Bản PDF Đề thi chọn HSG tỉnh Toán lớp 12 năm học 2017 – 2018 sở GD và ĐT Hải Dương gồm 5 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi : + Môn bóng đá nam SEA GAME có 10 đội bóng tham dự trong đó có Việt Nam và Thái Lan. Chia 10 đội bóng này thành 2 bảng A, B. Mỗi bảng có 5 đội. Tính xác suất sao cho Việt Nam và Thái Lan ở cùng một bảng. [ads] + Cho tứ diện ABCD có AB = CD = c, AC = BD = b, AD = BC = a. a. Tính góc giữa hai đường thẳng AB, CD b. Chứng minh rằng trọng tâm của tứ diện ABCD cách đều tất cả các mặt của tứ diện + Cho hình chóp S.ABCD có SA = x, tất cả các cạnh còn lại có độ dài bằng 1. Tính thể tích khối chóp đó theo x và tìm x để thể tích đó là lớn nhất. File WORD (dành cho quý thầy, cô):
Đề thi chọn đội tuyển tham dự kỳ thi chọn HSG Quốc gia 2018 sở GD và ĐT Quảng Ngãi (Ngày 2)
Nội dung Đề thi chọn đội tuyển tham dự kỳ thi chọn HSG Quốc gia 2018 sở GD và ĐT Quảng Ngãi (Ngày 2) Bản PDF Đề thi chọn đội tuyển tham dự kỳ thi chọn HSG Quốc gia 2018 sở GD và ĐT Quảng Ngãi (Ngày thi thứ hai) gồm 3 bài toán tự luận, thời gian làm bài 180 phút, đề có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Trên một đường thẳng có 20 điểm P1, P2, … P20 được sắp theo thứ tự đó, mỗi điểm sẽ được tô bởi một trong hai màu xanh hoặc đỏ. Hỏi có bao nhiêu cách tô màu để cho nếu số các điểm liền kề được tô màu giống nhau thì luôn là một số lẻ? [ads] + Cho P(x) là một đa thức hệ số nguyên và năm số nguyên phân biệt x1, x2, x3, x4, x5 thỏa điều kiện P(xi) = 5 với i = 1, 2, 3, 4, 5. Chứng minh rằng không tồn tại số nguyên n nào để -6 ≤ P(n) ≤ 4 hoặc 6 ≤ P(n) ≤ 16. + Cho x1, x2, … xk; y1, y2, … yn là các số nguyên phân biệt (với k, n ∈ Z*) sao cho tồn tại đa thức hệ số nguyên P(x) thỏa điều kiện: P(x1) = P(x2) = …. = P(xk) = 58 và P(y1) = P(y2) = …. = P(yn) = 2017 Xác định giá trị lớn nhất của kn. File WORD (dành cho quý thầy, cô):
Đề thi chọn đội tuyển tham dự kỳ thi chọn HSG Quốc gia 2018 sở GD và ĐT Quảng Ngãi (Ngày 1)
Nội dung Đề thi chọn đội tuyển tham dự kỳ thi chọn HSG Quốc gia 2018 sở GD và ĐT Quảng Ngãi (Ngày 1) Bản PDF Đề thi chọn đội tuyển tham dự kỳ thi chọn HSG Quốc gia năm 2018 sở GD và ĐT Quảng Ngãi (Ngày thi thử nhất) gồm 4 bài toán tự luận, thời gian làm bài 180 phút, đề có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Cho tam giác nhọn ABC có B, C cố định, A thay đổi. Phía ngoài tam giác ABC dựng các tam giác ABD, ACE vuông cân tại A và hình vuông BCFG. Dựng tam giác XAB vuông cân tại X (X khác phía với D đối với đường thẳng AB), tam giác YAC vuông cân tại Y (Y khác phía với E đối với đường thẳng AC). [ads] a) Chứng minh rằng 3 điểm D, Y, F thẳng hàng. b) Các đường thẳng DY, EX cắt nhau tại P. Chứng minh rằng đường thẳng AP luôn đi qua một điểm cố định khi A thay đổi. + Có bao nhiêu bộ sắp thứ tự (a, b, c) với a, b, c là các số nguyên dương thỏa mãn điều kiện [a, b, c] = 2^3.3^5.5^7? (Kí hiệu a, b, c là bội chung nhỏ nhất của ba số nguyên dương a, b, c). + Tìm số nguyên dương n nhỏ nhất để 5n +1 chia hết cho 7^2018. File WORD (dành cho quý thầy, cô):