Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra Toán 10 lần 1 năm 2020 - 2021 trường THPT Lý Thái Tổ - Bắc Ninh

Đề kiểm tra chất lượng Toán 10 lần 1 năm học 2020 – 2021 trường THPT Lý Thái Tổ – Bắc Ninh gồm 01 trang với 07 câu tự luận, thời gian làm bài 90 phút, kỳ thi được diễn ra vào Chủ Nhật ngày 17 tháng 01 năm 2021, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề kiểm tra Toán 10 lần 1 năm 2020 – 2021 trường THPT Lý Thái Tổ – Bắc Ninh : + Một người cần phải làm cái cửa sổ mà phía trên là hình bán nguyệt, phía dưới là hình chữ nhật, có chu vi là 8 ( là chu vi hình bán nguyệt cộng với chu vi hình chữ nhật trừ đi độ dài cạnh hình chữ nhật là đường kính của hình bán nguyệt). Hãy xác định các kích thước của của hình chữ nhật để diện tích cửa sổ là lớn nhất. + Tìm tập xác định của các hàm số sau. + Trong mặt phẳng với hệ trục tọa độ Oxy, cho ba điểm A(1;-1), B(3;2), C(1;-4). 1) Chứng minh A, B, C là ba đỉnh của một tam giác. Tính độ dài trung tuyến AM của tam giác ABC. 2) Tìm tọa độ trực tâm H của tam giác ABC.

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra định kỳ học kỳ 1 môn Toán 10 trường THPT Võ Thành Trinh - An Giang
Đề kiểm tra định kỳ học kỳ 1 môn Toán 10 trường THPT Võ Thành Trinh – An Giang gồm 4 mã đề, mỗi đề gồm 2 trang với 16 câu trắc nghiệm và 2 câu tự luận, thời gian làm bài 45 phút, tất cả các mã đề đều có đáp án . Trích dẫn đề thi : + Cho hai tập hợp A = {1; 2; 3; 4; 5} và B = {2; 4; 6; 8}. Xác định tập hợp A ∪ B. A. A ∪ B = {1; 3; 5} B. A ∪ B = {1; 2; 3; 4; 5; 6; 7; 8} C. A ∪ B = {1; 2; 3; 4; 5; 6; 8} D. A ∪ B = {2; 4} [ads] + Phủ định của mệnh đề “∀x ∈ R : x^2 + x + 2 > 0” là mệnh đề nào sau đây? A. ∃x ∈ R : x^2 + x + 2 < 0 B. ∀x ∈ R : x^2 + x + 2 < 0 C. ∃x ∈ R : x^2 + x + 2 ≤ 0 D. ∀x ∈ R : x^2 + x + 2 ≤ 0 + Hàm số nào trong các hàm số sau đây có đồ thị như hình bên? A. y = x − 3 B. y = 2x − 3 C. y = 4x − 6 D. y = −4x + 6
Đề kiểm tra định kỳ tháng 9 năm học 2017 - 2018 môn Toán 10 trường THCS - THPT Khai Minh - TP. HCM
Đề kiểm tra định kỳ tháng 9 năm học 2017 – 2018 môn Toán 10 trường THCS – THPT Khai Minh – TP. HCM gồm 8 bài toán tự luận, có lời giải chi tiết và thang điểm . Trích dẫn đề thi : + Giả sử ABC là một tam giác đã cho. Lập mệnh đề P ⇒ Q và Q ⇒ P rồi xét tính đúng sai của chúng, với: P: “Góc A bằng 90 độ” và Q: “BC^2 = AB^2 + AC^2” + Cho các tập hợp: A = [-5; 11] và B = (2; 18) Xác định các tập hợp: A ∪ B; A ∩ B; A \ B; B \ A và biểu diễn chúng lên trục số? + Phát biểu mệnh đề phủ định của mỗi mệnh đề sau và giải thích mệnh đề phủ định đó đúng hay sai? a) ∃x ∈ R: x^2 = -5 b) ∀x ∈ R: x^2 + 2x + 8 = 0 [ads]
Đề kiểm tra định kỳ lần 1 môn Toán lớp 10 trường THPT Lê Lợi - Hà Nội
Đề kiểm tra định kỳ lần 1 môn Toán lớp 10 trường THPT Lê Lợi – Hà Nội gồm 15 câu trắc nghiệm và 3 câu tự luận. Trích dẫn đề kiểm tra : + Một chiếc cổng có dạng là một đường Parabol như hình vẽ, biết cổng cao 10m, chiều rộng BC = 4m. Chọn hệ trục tọa độ Oxy như hình vẽ. a) Tìm tọa độ các điểm A, B, C b) Tìm phương trình của parabol trên + Một vật chuyển động với đồ thị vận tốc như hình bên. Tính vận tốc trung bình của vật trong 10 giây đầu? [ads] A. 9,2 m/s B. 7,6 m/s C. 12,8 m/s D. 10 m/s + Cho hàm số y = f(x) có đồ thị như hình bên. Hãy chỉ ra tất cả các khoảng mà hàm số f(x) nghịch biến? A. (−∞; 0) và (0; +∞) B. (-2; 0) C. (−∞; -2) và (2; +∞) D. (−∞; -2) và (0; +∞)
Đề ôn tập trắc nghiệm môn Toán lớp 10 trường THPT chuyên Lương Thế Vinh - Đồng Nai
Đề ôn tập trắc nghiệm môn Toán lớp 10 trường THPT chuyên Lương Thế Vinh – Đồng Nai gồm 4 mã đề, mỗi đề gồm 50 câu hỏi trắc nghiệm. Nội dung đề gồm 2 chương: + Mệnh đề và tập hợp + Hàm số bậc nhất và hàm số bậc hai Trong đề có một số câu hỏi bằng Tiếng Anh được trích dẫn từ các đề thi quốc tế, đề ôn tập có đáp án . Trích dẫn đề thi : + Xét hai hàm số: f(x) = x^2 + 2bx + 1 và g(x) = 2a(x + b), ở đây x là biến số và các hằng số a và b là các số thực. Với mỗi cặp hằng số a và b có thể được xem như là một điểm (a,b) trong mặt phẳng toạ độ Oab. Gọi S là tập hợp các điểm (a,b) sao cho đồ thị của các hàm số y = f(x) và y = g(x) không có điểm chung (trong mặt phẳng toạ độ Oxy). Diện tích của S bằng (hoặc gần bằng): [ads] A. 1 B. 4 C. 4π D. π + Cho parabol y = ax^2 + bx + c có đỉnh tại (4,−5) và cắt trục hoành tại hai điểm có hoành độ trái dấu. Trong các số a, b, c, số nào dương? A Chỉ b B Chỉ a C Chỉ c D Chỉ a và b + Biết rằng đồ thị hàm số y = ax^2 + bx + c cắt trục hoành tại hai điểm phân biệt A(x1;0), B(x2;0) (x1, x2 > 0) sao cho OA = AB. Hệ thức liên hệ giữa a, b, c là? A. 2b^2 = 9ac B. b^2 = 9ac C. b = 9ac D. b^2 = 9(a+ c)