Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL lần 1 Toán 12 năm 2019 - 2020 trường THPT Lý Nhân Tông - Bắc Ninh

Nhằm đáp ứng yêu cầu kiểm tra đánh giá chất lượng học tập môn Toán của học sinh khối 11 trong giai đoạn giữa học kỳ 1 năm học 2019 – 2020, tuần qua, trường THPT Lý Nhân Tông, tỉnh Bắc Ninh đã tổ chức kỳ thi khảo sát chất lượng Toán 12 lần thứ nhất. Đề KSCL lần 1 Toán 12 năm 2019 – 2020 trường THPT Lý Nhân Tông – Bắc Ninh với các mã đề 269 và 275, đề gồm có 05 trang với 40 câu hỏi và bài tập dạng trắc nghiệm, thời gian làm bài 60 phút, nội dung kiểm tra thuộc phạm vi chương trình Toán 12 đã học theo phân phối chương trình chuẩn, đề thi có đáp án. Trích dẫn đề KSCL lần 1 Toán 12 năm 2019 – 2020 trường THPT Lý Nhân Tông – Bắc Ninh : + Chọn khẳng định sai. Trong một khối đa diện? A. Mỗi đỉnh là đỉnh chung của ít nhất 3 mặt. B. Mỗi cạnh của khối đa diện là cạnh chung của đúng 2 mặt. C. Mỗi mặt có ít nhất 3 cạnh. D. Hai mặt bất kì luôn có ít nhất một điểm chung. [ads] + Cho hàm số y = f(x) xác định, liên tục trên R và có bảng biến thiên như hình vẽ. Mệnh đề nào dưới đây đúng? A. Hàm số chỉ có giá trị nhỏ nhất không có giá trị lớn nhất. B. Hàm số có giá trị lớn nhất bằng 2 và giá trị nhỏ nhất bằng −3 . C. Hàm số có một điểm cực trị. D. Hàm số có hai điểm cực trị. + Trong một bài thi KSCL Toán 12 dạng trắc nghiệm khách quan có 10 câu. Mỗi câu có bốn phương án trả lời, trong đó chỉ có một phương án đúng. Mỗi câu trả lời đúng thì được 1 điểm, trả lời sai thì bị trừ 0,5 điểm. Một thí sinh do không học bài nên làm bài bằng cách với mỗi câu đều chọn ngẫu nhiên một phương án trả lời. Xác suất để thí sinh đó làm bài được số điểm không nhỏ hơn 7 là?

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát chất lượng lớp 12 môn Toán THPT năm 2020 2021 sở GD ĐT Thái Bình
Nội dung Đề khảo sát chất lượng lớp 12 môn Toán THPT năm 2020 2021 sở GD ĐT Thái Bình Bản PDF Thứ Tư ngày 16 tháng 06 năm 2021, sở Giáo dục và Đào tạo tỉnh Thái Bình tổ chức kỳ thi khảo sát chất lượng lớp 12 THPT môn Toán năm học 2020 – 2021, nhằm kiểm tra tình hình ôn tập, chuẩn bị cho kỳ thi tốt nghiệp THPT 2021 môn Toán của các em học sinh lớp 12. Đề khảo sát chất lượng Toán lớp 12 THPT năm 2020 – 2021 sở GD&ĐT Thái Bình mã đề 101 gồm 04 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án mã đề 101 – 102 – 103 – 104 – 105 – 106 – 107 – 108. Trích dẫn đề khảo sát chất lượng Toán lớp 12 THPT năm 2020 – 2021 sở GD&ĐT Thái Bình : + Cho hình chóp S ABC có đáy là tam giác vuông tại B, AB a 3 BC a 3; SA vuông góc với mặt phẳng đáy và SA a 2. Gọi M, N theo thứ tự là trọng tâm tam giác SAB và ABC. Góc giữa đường thẳng MN và mặt phẳng ABC bằng? + Cho hàm số y f x có đạo hàm liên tục trên và có đồ thị như hình vẽ. Ký hiệu 1 2 S S lần lượt là diện tích các hình phẳng giới hạn bởi đồ thị hàm số y f x và trục hoành (hình vẽ). Biết 2 1 S S 4 8. Giá trị của tích phân 2 3 2 0 x x f x x d bằng? + Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A 0 1 2, B 2 3 0, C 2 1 1, D 0 1 3, đường thẳng d: 2 1 2 1 4 x y z. Điểm M trong không gian thỏa mãn: MA MB MC MD 1. Khoảng cách lớn nhất từ điểm M đến đường thẳng d bằng?
Đề khảo sát lớp 12 môn Toán năm 2020 2021 trường THPT Thiệu Hóa Thanh Hóa
Nội dung Đề khảo sát lớp 12 môn Toán năm 2020 2021 trường THPT Thiệu Hóa Thanh Hóa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề khảo sát chất lượng (KSCL) môn Toán lớp 12 năm học 2020 – 2021 trường THPT Thiệu Hóa – Thanh Hóa. Trích dẫn đề khảo sát Toán lớp 12 năm 2020 – 2021 trường THPT Thiệu Hóa – Thanh Hóa : + Trong không gian Oxyz, cho mặt phẳng (P): x + y – z – 3 = 0 và hai điểm A(1;1;1) và B(-3;-3;-3). Mặt cầu (S) đi qua A, B và tiếp xúc với (P) tại điểm C. Biết rằng C luôn thuộc một đường tròn cố định, bán kính của đường tròn đó bằng? + Từ một tấm tôn có kích thước 90 cm x 300 cm, người ta làm một máng chứa nước thải trên mái nhà, mặt cắt ngang của máng là hình thang cân ABCD đáy lớn AD, AB = BC = CD = 30cm (minh hoạ hình bên). Thể tích lớn nhất của máng bằng? + Cho hàm số bậc ba y = f(x) có đồ thị là đường cong trong hình bên. Tìm tất cả các giá trị của tham số m để hàm số h(x) = |f2(x) + f(x) + m| có đúng 3 điểm cực trị.