Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL lần 1 Toán 12 năm 2019 - 2020 trường THPT Lý Nhân Tông - Bắc Ninh

Nhằm đáp ứng yêu cầu kiểm tra đánh giá chất lượng học tập môn Toán của học sinh khối 11 trong giai đoạn giữa học kỳ 1 năm học 2019 – 2020, tuần qua, trường THPT Lý Nhân Tông, tỉnh Bắc Ninh đã tổ chức kỳ thi khảo sát chất lượng Toán 12 lần thứ nhất. Đề KSCL lần 1 Toán 12 năm 2019 – 2020 trường THPT Lý Nhân Tông – Bắc Ninh với các mã đề 269 và 275, đề gồm có 05 trang với 40 câu hỏi và bài tập dạng trắc nghiệm, thời gian làm bài 60 phút, nội dung kiểm tra thuộc phạm vi chương trình Toán 12 đã học theo phân phối chương trình chuẩn, đề thi có đáp án. Trích dẫn đề KSCL lần 1 Toán 12 năm 2019 – 2020 trường THPT Lý Nhân Tông – Bắc Ninh : + Chọn khẳng định sai. Trong một khối đa diện? A. Mỗi đỉnh là đỉnh chung của ít nhất 3 mặt. B. Mỗi cạnh của khối đa diện là cạnh chung của đúng 2 mặt. C. Mỗi mặt có ít nhất 3 cạnh. D. Hai mặt bất kì luôn có ít nhất một điểm chung. [ads] + Cho hàm số y = f(x) xác định, liên tục trên R và có bảng biến thiên như hình vẽ. Mệnh đề nào dưới đây đúng? A. Hàm số chỉ có giá trị nhỏ nhất không có giá trị lớn nhất. B. Hàm số có giá trị lớn nhất bằng 2 và giá trị nhỏ nhất bằng −3 . C. Hàm số có một điểm cực trị. D. Hàm số có hai điểm cực trị. + Trong một bài thi KSCL Toán 12 dạng trắc nghiệm khách quan có 10 câu. Mỗi câu có bốn phương án trả lời, trong đó chỉ có một phương án đúng. Mỗi câu trả lời đúng thì được 1 điểm, trả lời sai thì bị trừ 0,5 điểm. Một thí sinh do không học bài nên làm bài bằng cách với mỗi câu đều chọn ngẫu nhiên một phương án trả lời. Xác suất để thí sinh đó làm bài được số điểm không nhỏ hơn 7 là?

Nguồn: toanmath.com

Đọc Sách

Đề KSCL Toán 12 lần 4 năm 2020 - 2021 trường THPT Thành Nhân - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh đề khảo sát chất lượng môn Toán lớp 12 lần 4 năm học 2020 – 2021 trường THPT Thành Nhân – thành phố Hồ Chí Minh; đề thi có đáp án mã đề 101. Trích dẫn đề KSCL Toán 12 lần 4 năm 2020 – 2021 trường THPT Thành Nhân – TP HCM : + Cho đồ thị hàm số 3 2 6 5 y f x ax bx cx cắt đường thẳng d y g x tại ba điểm A B C với xA 3, yB 0, xC 3 như hình vẽ. Gọi H K lần lượt là hình chiếu của A C lên trục Ox. Biết rằng 169 25 ABH BCK S S và diện tích phần hình phẳng (tô đậm) giới hạn bởi đồ thị y f x y g x x x B x 3 là 775 972 S. Giá trị f(4) bằng? + Cho hình nón có đỉnh S và chiều cao bằng a 2. Lấy hai điểm M N nằm trên đường tròn đáy sao cho tam giác SMN là tam giác đều và có diện tích bằng 2 3 3 4 a (tham khảo hình vẽ). Mặt phẳng SMN chia mặt xung quanh nón thành hai phần. Tính diện tích phần bề mặt xung quanh của hình nón có đáy là cung nhỏ MN (phần tô đậm). + Trong không gian Oxyz, cho hai điểm A(4;5;1), B(12;-1;5) và mặt phẳng 10 0 P z. Xét mặt cầu S đi qua điểm A, đồng thời tiếp xúc cả hai mặt phẳng P và Oxy. Lấy điểm M nằm trên mặt cầu S. Độ dài đoạn thẳng BM ngắn nhất bằng?
Đề KSCL Toán 12 năm 2020 - 2021 trường chuyên Lê Hồng Phong - Nam Định
Sáng thứ Hai ngày 03 tháng 05 năm 2021, trường THPT chuyên Lê Hồng Phong, tỉnh Nam Định tổ chức kỳ thi khảo sát chất lượng lớp 12 môn Toán năm học 2020 – 2021. Đề KSCL Toán 12 năm 2020 – 2021 trường chuyên Lê Hồng Phong – Nam Định mã đề 752 gồm 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề KSCL Toán 12 năm 2020 – 2021 trường chuyên Lê Hồng Phong – Nam Định : + Có bao nhiêu số phức z với phần thực là số nguyên thỏa mãn là số ảo? + Xét điểm M có hoành độ là số nguyên thuộc đồ thị (C). Tiếp tuyến của đồ thị (C) tại điểm M cắt đường tiệm cận ngang của (C) tại điểm A. Hỏi có bao nhiêu điểm M thỏa mãn điều kiện A cách gốc tọa độ một khoảng cách nhỏ hơn 2 10. + Xét hình chóp S.ABC có đáy là tam giác đều cạnh bằng 2, SA vuông góc với mặt phẳng chứa đáy. Gọi M là trung điểm của AB và p là góc giữa đường thẳng SM và mặt phẳng (SBC). Biết rằng sin p, tìm giá trị lớn nhất của thể tích khối chóp S.ABC.
Đề KSCL Toán 12 lần 2 năm 2020 - 2021 trường Quảng Xương 2 - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán 12 lần 2 năm học 2020 – 2021 trường THPT Quảng Xương 2, tỉnh Thanh Hóa. Trích dẫn đề KSCL Toán 12 lần 2 năm 2020 – 2021 trường Quảng Xương 2 – Thanh Hóa : + Một xí nghiệp chế biến sữa bò muốn sản xuất lon đựng sữa có dạng hình trụ bằng thiếc có thể tích không đổi. Để giảm giá một lon sữa khi bán ra thị trường người ta cần chế tạo lon sữa có kích thước sao cho ít tốn kém vật liệu. Để thỏa mãn yêu cầu đặt ra (diện tích toàn phần bé nhất), người ta phải thiết kế lon sữa thỏa mãn điều kiện nào trong các điều kiện sau: A. Chiều cao bằng 3 lần bán kính của đáy. B. Chiều cao bằng bình phương bán kính của đáy. C. Chiều cao bằng đường kính của đáy. D. Chiều cao bằng bán kính của đáy. + Cho hàm số f(x) liên tục trên R và đồ thị hàm số y f x cắt trục hoành tại các điểm có hoành độ lần lượt là a, b, 0, c (a < b < c) (như hình bên dưới). Gọi S là tập hợp tất cả các giá trị thực của tham số m sao cho giá trị lớn nhất của hàm số 2 g x f x m trên a c bằng 2021. Tổng tất cả các phần tử của S bằng? + Cho hàm số bậc bốn y f x có đồ thị là đường cong (như hình vẽ bên dưới). Biết hàm số đạt cực trị tại ba điểm 1 2 3 x x x theo thứ tự lập thành một cấp số cộng có công sai là 2. Gọi 1 S là diện tích phần gạch chéo, 2 S là diện tích phần tô đậm. Tỉ số 1 2 S S bằng?
Đề KSCL Toán 12 lần 2 năm 2020 - 2021 trường THPT Thuận Thành 1 - Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán lớp 12 lần 2 năm học 2020 – 2021 trường THPT Thuận Thành 1 – Bắc Ninh; đề thi có đáp án mã đề 132, 209, 357, 485, 570, 628, 743, 896. Trích dẫn đề KSCL Toán 12 lần 2 năm 2020 – 2021 trường THPT Thuận Thành 1 – Bắc Ninh : + Trong không gian, cho bốn mặt cầu có bán kính lần lượt là 2, 3, 3, 2 (đơn vị độ dài) tiếp xúc ngoài với nhau. Mặt cầu nhỏ nhất tiếp xúc ngoài với cả bốn mặt cầu nói trên có bán kính bằng? + Một nhóm học sinh trường THPT Thuận Thành số 1 (tỉnh Bắc Ninh) có 10 người. Cần chọn 3 học sinh trong nhóm để làm 3 công việc là tưới cây, lau bàn và nhặt rác, mỗi người làm một công việc. Số cách chọn là? + Trong mặt phẳng tọa độ Oxy, 3 điểm ABC lần lượt là điểm biểu diễn của ba số phức. Khi đó, trọng tâm G là điểm biểu diễn của số phức nào sau đây?