Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Giải bài toán chứa căn - Nguyễn Tiến

Tài liệu gồm 89 trang được biên soạn bởi thầy giáo Nguyễn Tiến tổng hợp kiến thức chuyên đề căn thức, giúp học sinh lớp 9 nắm được phương pháp giải các bài toán chứa căn, tài liệu không có các bài tập dạng nâng cao, phức tạp, phù hợp với các đối tượng học sinh học lớp 9 và học ôn thi vào 10 các trường công lập trên cả nước với các dạng đề về căn bậc hai không khó. PHÂN DẠNG TOÁN CHỨA CĂN. A. TÌM HIỂU VỀ CĂN BẬC HAI. B. TÌM ĐIỀU KIỆN ĐỂ BIỂU THỨC XÁC ĐỊNH (CÓ NGHĨA, TỒN TẠI). C. CÁC BÀI TOÁN RÚT GỌN BIỂU THỨC CHỨA CĂN. DẠNG 1 : RÚT GỌN BIỂU THỨC CHỨA SỐ. + Loại 1: Dạng chứa căn số học đơn giản. + Loại 2: Dạng “biểu thức số trong căn” tiềm ẩn “là hằng đẳng thức”. + Loại 3: Dạng sử dụng biểu thức liên hợp, trục căn thức, quy đồng. + Loại 4: Chứng minh đẳng thức số. + Loại 5: Chứng minh bất đẳng thức. + Loại 6: Căn bậc ba. DẠNG 2 : CÁC DẠNG TOÁN CĂN CHỨA CHỮ (CHỨA ẨN). DẠNG TOÁN GIẢI PHƯƠNG TRÌNH CHỨA CĂN THỨC. + Loại 1: Phương trình trong căn có thể viết dưới dạng bình phương của một biểu thức. + Loại 2: Phương trình dạng √f(x) = √g(x). + Loại 3: Phương trình chứa biểu thức dưới dấu căn không viết được dưới dạng bình phương (trong phương trình chỉ chứa một căn thức). + Loại 4: Phương trình chứa nhiều căn thức, các căn thức có thể đưa về dạng giống nhau. [ads] + Loại 5: Phương trình chứa các căn khác nhau, biểu thức trong căn không viết được dưới dạng bình phương. + Loại 6: Quy về phương trình bậc hai bằng phương pháp đặt ẩn phụ. + Loại 7: Phương trình chứa căn mà biểu thức trong căn ở dạng thương hoặc dạng tích. + Loại 8: Giải các phương trình căn bậc ba. DẠNG TOÁN RÚT GỌN BIỂU THỨC CHỨA CĂN. + Loại 1: Sử dụng các hằng đẳng thức. + Loại 2: Sử dụng phương pháp quy đồng. + Loại 3: Làm xuất hiện nhân tử chung rồi đơn giản biểu thức chứa căn sau đó quy đồng. DẠNG TOÁN CHỨA CĂN VÀ BÀI TOÁN PHỤ. + Bài toán 1: Tìm ẩn để biểu thức thỏa mãn một điều kiện cho trước (lớn hơn, nhỏ hơn, bằng một giá trị cho trước). + Bài toán 2. Tính giá trị của biểu thức tại giá trị cho trước. + Bài toán 3: Tìm a nguyên để biểu thức nguyên. + Bài toán 4: Tìm giá trị lớn nhất, nhỏ nhất. PHẦN BÀI TẬP. BÀI TOÁN TỔNG HỢP – TỰ GIẢI. PHẦN ĐÁP ÁN – HƯỚNG DẪN GIẢI. DẠNG TOÁN RÚT GỌN BIỂU THỨC CHỨA SỐ.  + Loại 1: Dạng chứa căn số học đơn giản. + Loại 2: Dạng “biểu thức số trong căn” tiềm ẩn “là hằng đẳng thức”. + Loại 3: Dạng sử dụng biểu thức liên hợp, trục căn thức, quy đồng. DẠNG TOÁN RÚT GỌN BIỂU THỨC CHỨA CĂN. + Loại 1: Sử dụng các Hằng đẳng thức. + Loại 2: Sử dụng phương pháp quy đồng. + Loại 3: Làm xuất hiện nhân tử chung rồi đơn giản biểu thức chứa căn sau đó quy đồng. DẠNG TOÁN CHỨA CĂN VÀ BÀI TOÁN PHỤ.

Nguồn: toanmath.com

Đọc Sách

Tài liệu Toán 9 chủ đề hàm số và đồ thị hàm số y ax2 (a khác 0)
Tài liệu gồm 20 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề hàm số và đồ thị hàm số y = ax2 (a khác 0) trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Các kiến thức cần nhớ. 1. Tính chất của hàm số 2 y ax a 0. – Nếu a > 0 thì hàm số đồng biến khi x > 0 và nghịch biến khi x < 0. – Nếu a < 0 thì hàm số đồng biến khi x < 0 và nghịch biến khi x > 0. Nhận xét: – Nếu a > 0 thì y > 0 với mọi x ≠ 0; y = 0 khi x = 0. Giá trị nhỏ nhất của y bằng 0. – Nếu a < 0 thì y < 0 với mọi x ≠ 0; y = 0 khi x = 0. Giá trị lớn nhất của y bằng 0. 2. Đồ thị của hàm số 2 y ax a 0. Đồ thị của hàm số 2 y ax a 0 là một đường cong luôn đi qua gốc tọa độ và nhận Oy làm trục đối xứng. Đường cong được gọi là Parabol với đỉnh O. – Nếu a > 0 thì (P) nằm phía trên trục hoành và O là điểm thấp nhất. – Nếu a < 0 thì (P) nằm phía dưới trục hoành và O là điểm cao nhất. B. Bài tập áp dụng. + Dạng 1: Tính giá trị của hàm số tại một điểm cho trước. + Dạng 2: Xét tính đồng biến, nghịch biến của hàm số. + Dạng 3: Vẽ đồ thị hàm số y = ax2 (a khác 0). + Dạng 4: Sự tương giao giữa (P) và (d). BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề công thức nghiệm của phương trình bậc hai
Tài liệu gồm 28 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề công thức nghiệm của phương trình bậc hai trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Kiến thức cần nhớ. 1. Phương trình bậc hai một ẩn. – Phương trình bậc hai một ẩn (hay còn gọi là phương trình bậc hai) là phương trình có dạng: 2 ax bx c a trong đó abc là các số thực cho trước và x là ẩn số. – Giải phương trình bậc hai một ẩn là đi tìm tập nghiệm của phương trình bậc hai một ẩn đó. 2. Công thức nghiệm của phương trình bậc hai. Xét phương trình bậc hai 2 ax bx c a 0 0 và biệt thức 2 ∆ b ac 4. – Trường hợp 1: Nếu ∆ < 0 thì phương trình vô nghiệm. – Trường hợp 2: Nếu ∆ = 0 thì phương trình có nghiệm kép. – Trường hợp 3: Nếu ∆ > 0 thì phương trình có hai nghiệm phân biệt. 3. Công thức nghiệm thu gọn của phương trình bậc hai. Xét phương trình bậc hai 2 ax bx c a 0 với b b 2. Gọi biệt thức 2 ∆ b ac. – Trường hợp 1: Nếu ∆ < 0 thì phương trình vô nghiệm. – Trường hợp 2: Nếu ∆ = 0 thì phương trình có nghiệm kép: 1 2 b x x a. – Trường hợp 3: Nếu ∆ > 0 thì phương trình có hai nghiệm phân biệt: 1 2 b x a. Chú ý: Trong trường hợp hệ số b có dạng 2 b ta nên sử dụng ∆’ để giải phương trình sẽ cho lời giải ngắn gọn hơn. Nếu a c trái dấu thì phương trình luôn có hai nghiệm phân biệt. B. Bài tập và các dạng toán. + Dạng 1: Không dùng công thức nghiệm, giải phương trình bậc hai một ẩn cho trước. + Dạng 2: Giải phương trình bậc hai bằng cách sử dụng công thức nghiệm, công thức nghiệm thu gọn. + Dạng 3: Sử dụng công thức nghiệm, xác định số nghiệm của phương trình dạng bậc hai. + Dạng 4: Giải và biện luận phương trình dạng bậc hai. + Dạng 5: Dạng toán liên quan đến tính có nghiệm của phương trình bậc hai, nghiệm chung của phương trình bậc hai. + Dạng 6: Chứng minh phương trình bậc hai có nghiệm, vô nghiệm. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề hệ thức Vi-ét và ứng dụng
Tài liệu gồm 36 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề hệ thức Vi-ét và ứng dụng trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Lý thuyết. 1. Hệ thức Viét. 2. Ứng dụng của hệ thức Viét. B. Bài tập. Dạng 1: Không giải phương trình, tính giá trị của biểu thức đối xứng giữa các nghiệm. Dạng 2: Giải phương trình bằng phương pháp nhẩm nghiệm. Dạng 3: Tìm hai số khi biết tổng và tích. Dạng 4: Xét dấu các nghiệm của phương trình bậc hai. Dạng 5: Xác định điều kiện của tham số để phương trình bậc hai có nghiệm thỏa mãn hệ thức cho trước. Dạng 6: Tìm GTLN – GTNN của biểu thức. Dạng 7: Tìm hệ thức giữa hai nghiệm của phương trình không phụ thuộc vào tham số. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề phương trình quy về phương trình bậc hai
Tài liệu gồm 27 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề phương trình quy về phương trình bậc hai trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Lý thuyết. 1. Phương trình trùng phương: Phương trình trùng phương là phương trình có dạng: 4 2 ax bx c a 0. Cách giải: Đặt ẩn phụ 2 t xt 0 để đưa phương trình về phương trình bậc hai: 2 at bt c a 0. 2. Phương trình chứa ẩn ở mẫu thức. Để giải phương trình chứa ẩn ở mẫu thức ta làm theo các bước sau: + Bước 1: Tìm điều kiện xác định của ẩn của phương trình. + Bước 2: Quy đồng mẫu thức hai vế rồi khử mẫu. + Bước 3: Giải phương trình vừa nhận được ở bước 2. + Bước 4: So sánh các nghiệm tìm được ở bước 3 với điều kiện xác định và kết luận. 3. Phương trình đưa về dạng tích. Để giải phương trình đưa về dạng tích, ta có thể thực hiện theo các bước sau: + Bước 1: Phân tích vế trái thành nhân tử, vế phải bằng 0. + Bước 2: Xét từng nhân tử bằng 0 để tìm nghiệm. B. Bài tập và các dạng toán. I. Phương trình không chứa tham số. + Dạng 1: Giải phương trình trùng phương. + Dạng 2: Phương trình chứa ẩn ở mẫu thức. + Dạng 3: Phương trình đưa về dạng tích. + Dạng 4: Giải bằng phương pháp đặt ẩn phụ. + Dạng 5: Phương trình chứa căn thức. + Dạng 6: Một số dạng khác. II. Phương trình chứa tham số. + Dạng 1: Phương trình bậc ba đưa được về dạng tích 2 x k ax bx c 0. + Dạng 2: Phương trình trùng phương. BÀI TẬP VỀ NHÀ.