Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp tọa độ hóa hình không gian

Tài liệu gồm 51 trang hướng dẫn sử dụng phương pháp tọa độ hóa để giải bài toán hình học không gian cổ điển, tài liệu được biên soạn bởi nhóm tác giả Tạp chí và Tư liệu Toán học. Khái quát tài liệu phương pháp tọa độ hóa hình không gian : Đôi khi trong giải toán hình học không gian cổ điển ta sẽ gặp khá nhiều bài toán tính toán phức tạp, tuy nhiên trong phòng thi ta lại không có nhiều thời gian, vì thế trong chương này chúng ta sẽ tìm hiểu một phương pháp giải quyết nhanh các bài toán tính toán phức tạp và khó trong hình không gian cổ điển, liên quan tới cực trị, góc, khoảng cách. I. Ý TƯỞNG . PHƯƠNG PHÁP: Trên mạng có một vài tài liệu nói về phương pháp này và chia thành rất nhiều dạng, điều đó làm chúng ta khi áp dụng có phần khó nhớ và máy móc, tuy nhiên chúng ta chỉ cần nắm được dấu hiệu và phương pháp sau: + Bước 1 . Chọn hệ trục tọa độ. Trong bước này ta sẽ xác định 3 đường vuông góc có trong bài toán và gọi đó là 3 đường cơ sở. Thông thường thì ta sẽ quy ước trục Ox hướng vào mình, trục Oz nằm ngang, còn lại là trục Oy. [ads] + Bước 2 . Xác định tọa độ các điểm liên trên hình liên quan tới bài toán. Với những bạn chưa quen thì chúng ta xác định tọa độ hình chiếu của điểm cần tìm lên các trục, từ đó sẽ suy ra được tọa độ điểm cần tính. + Bước 3 . Áp dụng công thức. Sau đây chúng ta sẽ nhắc lại một số công thức cần nhớ trong phần này: + Diện tích và thể tích: Diện tích tam giác, Thể tích tứ diện, Thể tích hình hộp, Thể tích hình lăng trụ. + Góc: Góc giữa 2 mặt phẳng, Góc giữa 2 đường thẳng, Góc giữa đường thẳng và mặt phẳng. + Khoảng cách:  Khoảng cách từ điểm đến mặt phẳng, Khoảng cách từ một điểm đến 1 đường thẳng, Khoảng cách giữa hai đường thẳng chéo nhau. Chú ý . Thông thường các bài mà không có 3 đường vuông góc thì ta sẽ phải tự dựng thêm để gắn tọa độ và những bài liên quan tới hình lập phương, hình hộp chữ nhật, chối chóp có 3 đường vuông góc, lăng trụ đứng thì khi áp dụng phương pháp này sẽ giải rất nhanh. II. CÁC BÀI TOÁN : Tuyển chọn 59 bài toán hình học không gian cổ điển được giải bằng phương pháp tọa độ hóa.

Nguồn: toanmath.com

Đọc Sách

Nắm trọn chuyên đề hình học Oxyz và số phức
Cuốn sách gồm 511 trang, được biên soạn bởi nhóm tác giả Tư Duy Toán Học 4.0: Phan Nhật Linh, Nguyễn Duy Hiếu, Nguyễn Khánh Linh, Lê Huy Long, tóm tắt toàn bộ lý thuyết và phương pháp giải các dạng toán, các ví dụ minh họa và bài tập rèn luyện từ cơ bản đến nâng cao chuyên đề hình học Oxyz và số phức, giúp các em hoàn thiện kiến thức, rèn tư duy và rèn luyện tốc độ làm bài; tất cả các bài tập trong sách đều có giải chi tiết 100% tiện lợi cho việc so sánh đáp án và tra cứu thông tin. Mục lục cuốn sách nắm trọn chuyên đề hình học Oxyz và số phức: PHẦN I : HÌNH TỌA ĐỘ OXYZ. CHỦ ĐỀ 1: HỆ TỌA ĐỘ TRONG KHÔNG GIAN. Dạng 1. Điểm và vectơ trong hệ tọa độ Oxyz. Dạng 2. Tích vô hướng và ứng dụng. Dạng 3. Phương trình mặt cầu. Dạng 4. Cực trị. CHỦ ĐỀ 2: PHƯƠNG TRÌNH MẶT PHẲNG. Dạng 1. Xác định vectơ pháp tuyến, tính tích có hướng của mặt phẳng. Dạng 2. Viết phương trình mặt phẳng. Dạng 3. Tìm tọa độ điểm liên quan đến mặt phẳng. Dạng 4. Góc và khoảng cách liên quan đến mặt phẳng. Dạng 5. Vị trí tương đối giữa hai mặt phẳng, giữa mặt cầu và mặt phẳng. Dạng 6. Cực trị liên quan đến mặt phẳng. CHỦ ĐỀ 3: PHƯƠNG TRÌNH ĐƯỜNG THẲNG. Dạng 1. Xác định vectơ chỉ phương của đường thẳng. Dạng 2. Viết phương trình đường thẳng. Dạng 3. Tìm tọa độ điểm liên quan đến đường thẳng. Dạng 4. Góc và khoảng cách liên quan đến đường thẳng. Dạng 5. Vị trí tương đối giữa hai đường thẳng, giữa đường thẳng và mặt phẳng. Dạng 6. Bài toán liên quan giữa đường thẳng – mặt phẳng – mặt cầu. Dạng 7. Cực trị liên quan đến đường thẳng. CHỦ ĐỀ 4: ỨNG DỤNG CỦA PHƯƠNG PHÁP TỌA ĐỘ. Dạng 1. Tọa độ hóa Hình học không gian. Dạng 2. Bài toán đại số. CHỦ ĐỀ 5: TỔNG HỢP VỀ HÌNH TỌA ĐỘ OXYZ. PHẦN II : SỐ PHỨC. Dạng toán 1: Xác định các yếu tố cơ bản của số phức. Dạng toán 2: Phép toán cộng, trừ, nhân hai số phức. Dạng toán 3: Phép chia hai số phức. Dạng toán 4: Bài tập quy về giải PT – HPT và tập hợp điểm biễu diễn số phức. Dạng toán 5: Phương trình bậc hai với hệ số thực. Dạng toán 6: Cực trị số phức.
Tổng ôn tập TN THPT 2021 môn Toán Phương pháp tọa độ trong không gian
Tài liệu gồm 153 trang, được tổng hợp bởi thầy giáo Nguyễn Bảo Vương, tuyển tập câu hỏi và bài tập trắc nghiệm chuyên đề phương pháp tọa độ trong không gian, có đáp án và lời giải chi tiết. Các câu hỏi và bài tập được trích từ các đề thi thử tốt nghiệp THPT năm 2021 môn Toán của các trường THPT và sở GD&ĐT trên cả nước, với mục đích giúp các em học sinh rèn luyện, rà soát kiến thức chủ đề Hình học 12 chương 3, trước khi bước vào kỳ thi tốt nghiệp THPT 2021 môn Toán và các kỳ thi tuyển sinh Đại học – Cao đẳng. Mục lục tài liệu tổng ôn tập TN THPT 2021 môn Toán: Phương pháp tọa độ trong không gian: 1. Mức độ nhận biết: 139 câu. + Câu hỏi và bài tập (Trang 01). + Đáp án và lời giải chi tiết (Trang 15). 2. Mức độ thông hiểu: 106 câu. + Câu hỏi và bài tập (Trang 41). + Đáp án và lời giải chi tiết (Trang 54). 3. Mức độ vận dụng thấp: 54 câu. + Câu hỏi và bài tập (Trang 84). + Đáp án và lời giải chi tiết (Trang 94). 4. Mức độ vận dụng cao: 41 câu. + Câu hỏi và bài tập (Trang 120). + Đáp án và lời giải chi tiết (Trang 126).
Chuyên đề phương pháp tọa độ trong không gian Oxyz - Nguyễn Trọng
Tài liệu gồm 57 trang, được biên soạn bởi thầy giáo Nguyễn Trọng, tóm tắt lý thuyết, phân dạng toán, ví dụ minh họa và bài tập trắc nghiệm chuyên đề phương pháp tọa độ trong không gian Oxyz, giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 3 và ôn thi tốt nghiệp Trung học Phổ thông môn Toán. Bài 1 . Hệ trục tọa độ Oxyz. + Dạng toán 1. Tọa độ của vectơ và các tính chất. + Dạng toán 2. Tìm tọa độ điểm. + Dạng toán 2. Tích vô hướng, tích có hướng của hai vectơ – các bài toán liên quan. Bài 2 . Phương trình mặt cầu. + Dạng toán 1. Xác định tọa độ tâm và bán kính mặt cầu. Nhận biết phương trình mặt cầu. + Dạng toán 2. Lập phương trình mặt cầu khi biết một số yếu tố cho trước. Bài 3 . Phương trình mặt phẳng. + Dạng toán 1. Tìm một VTPT của mặt phẳng. + Dạng toán 2. Viết phương trình mặt phẳng. + Dạng toán 3. Điểm thuộc mặt phẳng. Bài 4 . Phương trình đường thẳng. + Dạng toán 1. Tìm một VTCP của đường thẳng. + Dạng toán 2. Viết phương trình của đường thẳng. + Dạng toán 3. Tìm điểm thuộc đường thẳng và giao điểm của đường thẳng và mặt phẳng. Bài 5 . Vị trí tương đối tổng hợp. + Dạng toán 1. Vị trí tương đối giữa hai mặt phẳng. + Dạng toán 2. Vị trí tương đối giữa mặt phẳng và đường thẳng. + Dạng toán 3. Vị trí tương đối giữa đường thẳng và đường thẳng. + Dạng toán 4. Vị trí tương đối mặt cầu và mặt phẳng. + Dạng toán 5. Vị trí tương đối mặt cầu và đường thẳng. Bài 6 . Khoảng cách tổng hợp. + Dạng toán 1. Khoảng cách giữa hai điểm. + Dạng toán 2. Khoảng cách từ điểm đến mặt phẳng, khoảng cách giữa hai mặt phẳng song song, khoảng cách giữa một đường thẳng song song với mặt phẳng tới mặt phẳng. + Dạng toán 3. Khoảng cách từ điểm đến đường thẳng. + Dạng toán 4. Khoảng cách giữa hai đường thẳng chéo nhau.
Phân dạng và bài tập phương pháp tọa độ trong không gian
Tài liệu gồm 146 trang, được biên soạn bởi thầy giáo Hoàng Tuyên và thầy giáo Lê Minh Tâm, phân dạng toán và tuyển chọn bài tập trắc nghiệm chuyên đề phương pháp tọa độ trong không gian, có đáp án và lời giải chi tiết; giúp học sinh khối 12 rèn luyện khi học chương trình Hình học 12 chương 3 và ôn thi tốt nghiệp THPT môn Toán. CHUYÊN ĐỀ 1 . HỆ TRỤC TỌA ĐỘ OXYZ. + Dạng toán 1. Tìm tọa độ điểm, tọa độ véctơ thỏa điều kiện. + Dạng toán 2. Tính độ dài đoạn thẳng, véctơ. + Dạng toán 3. Xét sự cùng phương, sự đồng phẳng. + Dạng toán 4. Bài toán về tích vô hướng, góc và ứng dụng. + Dạng toán 5. Bài toán về tích có hướng và ứng dụng. CHUYÊN ĐỀ 2 . PHƯƠNG TRÌNH MẶT CẦU. + Dạng toán 1. Tìm tâm – bán kính – điều kiện xác định mặt cầu. + Dạng toán 2. Phương trình mặt cầu biết tâm, dễ tính bán kính. + Dạng toán 3. Phương trình mặt cầu biết hai đầu mút của đường kính. + Dạng toán 4. Phương trình mặt cầu ngoại tiếp tứ diện. + Dạng toán 5. Phương trình mặt cầu qua nhiều điểm và thỏa điều kiện. + Dạng toán 6. Phương trình mặt cầu biết tâm, tiếp xúc với mặt phẳng. + Dạng toán 7. Phương trình mặt cầu biết tâm và đường tròn trên nó. + Dạng toán 8. Phương trình mặt cầu biết tâm và điều kiện của dây cung. + Dạng toán 9. Phương trình mặt cầu biết tâm thuộc d, thỏa điều kiện. CHUYÊN ĐỀ 3 . PHƯƠNG TRÌNH MẶT PHẲNG. + Dạng toán 1. Tìm véctơ pháp tuyến, các vấn đề về lý thuyết. + Dạng toán 2. Phương trình mặt phẳng trung trực của đoạn thẳng. + Dạng toán 3. Phương trình mặt phẳng qua một điểm, dễ tìm véctơ pháp tuyến (không dùng tích có hướng). + Dạng toán 4. Phương trình mặt phẳng qua một điểm, véctơ pháp tuyến tìm bằng tích có hướng. + Dạng toán 5. Phương trình mặt phẳng qua một điểm, tiếp xúc với mặt cầu. + Dạng toán 6. Phương trình mặt phẳng qua hai điểm, véctơ pháp tuyến tìm bằng tích có hướng. + Dạng toán 7. Phương trình mặt phẳng qua ba điểm không thẳng hàng. + Dạng toán 8. Phương trình mặt phẳng vuông góc với đường thẳng. + Dạng toán 9. Phương trình mặt phẳng qua một điểm và chứa đường thẳng. + Dạng toán 10. Phương trình mặt phẳng chứa một đường thẳng, thỏa điều kiện với đường thẳng khác. + Dạng toán 11. Phương trình mặt phẳng liên quan đường thẳng và mặt cầu (VDC). + Dạng toán 12. Phương trình mặt phẳng song song với mặt phẳng, thỏa điều kiện. CHUYÊN ĐỀ 4 . PHƯƠNG TRÌNH ĐƯỜNG THẲNG. + Dạng toán 1. Tìm véctơ chỉ phương, các vấn đề về lý thuyết. + Dạng toán 2. Phương trình đường thẳng qua một điểm, dễ tìm véctơ chỉ phương (không dùng tích có hướng). + Dạng toán 3. Phương trình đường thẳng qua một điểm, véctơ chỉ phương tìm bằng tích có hướng. + Dạng toán 4. Phương trình đường thẳng qua một điểm, cắt đường này, có liên hệ với đường kia. + Dạng toán 5. Phương trình đường thẳng qua một điểm, cắt d, có liên hệ với mặt phẳng (P). + Dạng toán 6. Phương trình đường thẳng qua một điểm, cắt d1 lẫn d2 hoặc vuông góc d2. + Dạng toán 7. Phương trình đường thẳng nằm trong (P), vừa cắt vừa vuông góc với d. + Dạng toán 8. Giao tuyến của hai mặt phẳng. + Dạng toán 9. Đường vuông góc chung của hai đường thẳng chéo nhau. + Dạng toán 10. Hình chiếu vuông góc của d lên (P).