Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử THPT QG 2018 môn Toán lần 1 trường THPT Lý Tự Trọng - Nam Định

Đề thi thử THPT QG 2018 môn Toán lần 1 trường THPT Lý Tự Trọng – Nam Định mã đề 357 gồm 6 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, các câu hỏi trong đề có cả nội dung Toán 11 và Toán 12 theo như dự kiến của Bộ Giáo dục và Đào tạo cho kỳ thi THPTQG môn Toán năm 2018. Trích dẫn đề thi thử THPT QG 2018 môn Toán :” + Từ các chữ số A = {1, 2, 3, 4, 5, 6, 7} có thể lập được bao nhiêu số tự nhiên có 8 chữ số sao cho trong số có 8 chữ số được lập ra mỗi chữ số của tập A đều có mặt ít nhất một lần và không có hai chữ số chẵn nào đứng cạnh nhau? + Biết điểm A có tung độ lớn hơn 4 là giao điểm của đường thẳng y = x + 7 với đồ thị (C) của hàm số y = (2x – 1)/(x + 1). Tiếp tuyến của đồ thị (C) tại điểm A cắt hai trục tọa độ Ox và Oy lần lượt tại hai điểm E và F, khi đó tam giác OEF (với O là gốc tọa độ) có diện tích bằng? [ads] + Một công ty mỹ phẩm chiếc xuất được 1m3 hoạt chất đặc biệt và họ sử dụng nó để sản xuất ra một sản phẩm kem dưỡng da mới với thiết kế hộp là một khối cầu có đường kính là √108cm. Bên trong hộp là một khối trụ nằm trong nữa khối cầu để đựng kem dưỡng da (như hình vẽ bên). Để thu hút khách hàng, công ty đã thiết kế khối trụ có thể tích lớn nhất để đựng kem dưỡng da. Hỏi với 1m3 hoạt chất đặc biệt trên, công ty đó sản xuất được tối đa bao nhiêu sản phẩm, biết rằng trong kem dưỡng da chứa 0.3% hoạt chất đặc biệt trên.

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra chất lượng Toán 12 cuối năm 2019 - 2020 trường chuyên Lê Hồng Phong - Nam Định
Thứ Năm ngày 18 tháng 06 năm 2020, trường THPT chuyên Lê Hồng Phong, tỉnh Nam Định tổ chức kỳ thi kiểm tra chất lượng môn Toán 12 cuối năm học 2019 – 2020. Đề kiểm tra chất lượng Toán 12 cuối năm 2019 – 2020 trường chuyên Lê Hồng Phong – Nam Định mã đề 184 được biên soạn bám sát cấu trúc đề tham khảo tốt nghiệp THPT 2020 môn Toán của Bộ Giáo dục và Đào tạo, đề gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề kiểm tra chất lượng Toán 12 cuối năm 2019 – 2020 trường chuyên Lê Hồng Phong – Nam Định : + Sự tăng trưởng của một loại vi khuẩn được tính theo công thức S = A·e^rt, trong đó A là số lượng vi khuẩn lúc ban đầu, r là tỉ lệ tăng trưởng, t là thời gian tăng trưởng. Biết rằng số lượng vi khuẩn ban đầu là 500 con và tốc độ tăng trưởng là 15% trong 1 giờ. Hỏi cần ít nhất bao nhiêu thời gian thì số lượng vi khuẩn sẽ tăng đến hơn 1000000 con (một triệu con)? [ads] + Cho hình nón có đường cao h = 5a và bán kính đáy r = 12a. Gọi (α) là mặt phẳng đi qua đỉnh của hình nón và cắt đường tròn đáy theo dây cung có độ dài 10a. Tính diện tích thiết diện tạo bởi mặt phẳng (α) và hình nón đã cho. + Xét các số thực a, b, c với a > 1 thỏa mãn phương trình (log a x)^2 − 2blog a √x + c = 0 có hai nghiệm thực phân biệt x1; x2 đều lớn hơn 1 và x1.x2 ≤ a. Tìm giá trị nhỏ nhất của biểu thức S = b(c + 1)/c.
Đề khảo sát năng lực Toán 12 năm 2020 trường THPT Ngô Gia Tự - Phú Yên
Thứ Năm ngày 11 tháng 06 năm 2020, trường THPT Ngô Gia Tự, thành phố Tuy Hòa, tỉnh Phú Yên tổ chức kỳ thi kiểm tra khảo sát năng lực học tập môn Toán của học sinh lớp 12 năm học 2019 – 2020. Đề khảo sát năng lực Toán 12 năm 2020 trường THPT Ngô Gia Tự – Phú Yên mã đề 101 gồm có 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án mã đề 101, 102, 103, 104. Trích dẫn đề khảo sát năng lực Toán 12 năm 2020 trường THPT Ngô Gia Tự – Phú Yên : + Trong không gian, cho hình vuông ABCD cạnh bằng 2. Gọi M, N lần lượt là trung điểm của AB và CD. Khi quay hình vuông ABCD xung quanh cạnh MN thì đường gấp khúc MBCN tạo thành một hình tròn xoay. Diện tích xung quanh của hình tròn xoay đó bằng? [ads] + Cho hình nón có chiều cao bằng √3. Cắt hình nón đã cho bởi mặt phẳng đi qua đỉnh và cách tâm của đường tròn đáy một khoảng bằng 1, thiết diện thu được có diện tích bằng 3/2. Diện tích xung quanh của hình nón đã cho bằng? + Cho hàm số y = f(x). Hàm số y = f'(x) có đồ thị như hình bên. Gọi S là tập hợp tất cả các giá trị nguyên dương của tham số m để hàm số g(x) = f(x – m) – 1/2.(x – m – 1)^2 + 2020 đồng biến trên khoảng (5;6). Tổng tất cả các phần tử của S bằng?
Đề kiểm tra chất lượng Toán 12 lần 2 năm 2020 trường Lương Thế Vinh - Hà Nội
Nhằm chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán do Bộ GD&ĐT tổ chức, ngày … tháng 06 năm 2020, trường THCS & THPT Lương Thế Vinh, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng môn Toán 12 năm học 2019 – 2020 lần thi thứ hai. Đề kiểm tra chất lượng Toán 12 lần 2 năm 2020 trường Lương Thế Vinh – Hà Nội gồm 06 trang với 50 câu trắc nghiệm, học sinh có 90 phút để làm bài thi. Trích dẫn đề kiểm tra chất lượng Toán 12 lần 2 năm 2020 trường Lương Thế Vinh – Hà Nội : + Một em bé có một bộ 6 thẻ chữ, trên mỗi thẻ có ghi một chữ cái, trong đó có 3 thẻ chữ T, một thẻ chữ N, một thẻ chữ H và một thẻ chữ P. Em bé đó xếp ngẫu nhiên 6 thẻ đó thành một hàng ngang. Tính xác suất em bé xếp được thành dãy TNTHPT. [ads] + Cho hàm số y = (2x – m^2)/(x + 1) có đồ thị (Cm), trong đó m là tham số thực. Đường thẳng d: y = m – x cắt (Cm) tại hai điểm A(xA;yA) và B(xB;yB) với xA < xB; đường thẳng d’: y = 2 – m – x cắt (Cm) tại hai điểm C(xC;yC) và D(xD;yD) với xC < xD. Gọi S là tập hợp tất cả các giá trị của tham số m để xA.xD = -3. Số phần tử của tập S là? + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành có diện tích bằng 12a; khoảng cách từ S tới mặt phẳng (ABCD) bằng 4a. Gọi L là trọng tâm tam giác ACD; gọi T và V lần lượt là trung điểm các cạnh SB và SC. Mặt phẳng (LTV) chia hình chóp S.ABCD thành hai khối đa diện, hãy tính thể tích của khối đa diện chứa đỉnh S.
Đề khảo sát chất lượng Toán 12 năm 2019 - 2020 sở GDĐT Vĩnh Phúc
Nhằm chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán, ngày … tháng 06 năm 2020, sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng Toán 12 năm học 2019 – 2020. Đề khảo sát chất lượng Toán 12 năm 2019 – 2020 sở GD&ĐT Vĩnh Phúc mã đề 316 gồm 05 trang với 50 câu trắc nghiệm, thời gian làm bài thi là 90 phút. Trích dẫn đề khảo sát chất lượng Toán 12 năm 2019 – 2020 sở GD&ĐT Vĩnh Phúc : + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, K lần lượt là trung điểm của CD, CB, SA. Thiết diện của hình chóp cắt bởi mặt phẳng (MNK) là một đa giác (H). Hãy chọn khẳng định đúng (tham khảo hình vẽ). A. (H) là một tam giác. B. (H) là một hình bình hành. C. (H) là một hình thang (không phải là hình bình hành). D. (H) là một ngũ giác. [ads] + Gọi S là tập hợp các số tự nhiên có sáu chữ số trong đó có đúng ba chữ số 1, ba chữ số còn lại khác nhau và khác 0. Lấy ngẫu nhiên một số thuộc tập S. Xác suất để lấy được số mà trong đó không có hai chữ số 1 nào đứng cạnh nhau là? + Cho hình nón (H) có đỉnh S và đáy là hình tròn tâm O bán kính R, chiều cao 2R. Một mặt phẳng đi qua đỉnh và cắt đường tròn đáy theo dây cung AB có độ dài bằng bán kính đáy. Tính sin của góc tạo bởi OA và mặt phẳng (SAB).