Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

123 bài toán hàm số bậc nhất và đường thẳng - Lương Tuấn Đức

Trong khuôn khổ Toán học sơ cấp nói chung và Đại số phổ thông nói riêng, Hàm số và Đồ thị là dạng toán cơ bản nhưng thú vị, có phạm vi trải rộng, phong phú, liên hệ chặt chẽ với nhiều bộ phận khác của toán học sơ cấp cũng như toán học hiện đại. Tại Việt Nam, nội dung hàm số và đồ thị là một bộ phận hữu cơ, quan trọng, được phổ biến giảng dạy chính thức trong chương trình sách giáo khoa Toán bước đầu là lớp 7, tiếp sau là các lớp 9, 10, 11, 12 song song với các khối lượng kiến thức liên quan. Các kỹ năng đối với hàm số, đồ thị được luyện tập một cách đều đặn, bài bản và hệ thống sẽ rất hữu ích, không chỉ trong bộ môn Toán mà còn phục vụ đắc lực cho các môn khoa học tự nhiên khác như Hóa học, Vật lý, Địa lý, Sinh học …. Đối với chương trình Đại số lớp 9 THCS hiện hành, hàm số và đồ thị giữ vai trò chính yếu trong Đề thi kiểm tra chất lượng học kỳ, Đề thi tuyển sinh lớp 10 THPT hệ đại trà và hệ THPT Chuyên. Đối với các lớp cao hơn, nội dung này sẽ được mở rộng trở thành kiến thức chính yếu trong chương trình Đại số – Giải tích xuyên suốt các lớp 10, 12, bao gồm hàm số bậc cao và bài toán hình học giải tích, một bài toán mang tính phân loại cao trong kỳ thi tuyển sinh đại học – cao đẳng, kỳ thi THPT Quốc gia hàng năm, một kỳ thi đầy cam go, kịch tính và bất ngờ, nó lại là một câu rất được quan tâm của các bạn học sinh, phụ huynh, các thầy cô, giới chuyên môn và đông đảo bạn đọc yêu Toán. Trong phạm vi hàm số và đồ thị, tài liệu này tác giả tập trung trình bày một lớp các bài toán khảo sát sự biến thiên, vẽ đồ thị hàm số bậc nhất (tức là dạng đường thẳng), vấn đề vị trí tương đối giữa hai đường thẳng, hoặc vị trí tương đối giữa đường thẳng và đường cong, một số bài toán gắn kết yếu tố lượng giác, hình học giải tích. Như đã nói ở trên, mục đích khoa học chính của tài liệu nhằm phục vụ cho quá trình dạy và học, kiểm tra, kỳ thi tuyển sinh lớp 9 THPT, ngoài ra tác giả đã cố gắng nâng cao, mở rộng và phát triển từng bài toán theo đúng nội dung chủ đạo hàm số bậc THPT, chủ quan cho rằng điều này sẽ góp phần giới thiệu, định hướng, phá bỏ bỡ ngỡ, tạo ra cái nhìn đa chiều đối với bài toán đồ thị và hàm số, với những nội dung như cực trị, tương giao, tiếp tuyến, giá trị lớn nhất nhỏ nhất hàm số mai sau, thiết nghĩ yếu tố này góp phần làm tiền đề tư duy hàm số, tư duy hình học giải tích ở cấp THPT trong tương lai các em học sinh THCS, ngoài ra còn mang tính mở rộng, đào sâu, hướng đến mong muốn bạn đọc nghiên cứu đầy đủ về đường thẳng, tăng cường sự sáng tạo, đột phá, phát huy hơn nữa trong toán học và các ứng dụng trong hàng loạt các môn khoa học tự nhiên. [ads] I. KIẾN THỨC CHUẨN BỊ 1. Kỹ thuật nhân, chia đơn thức, đa thức, hằng đẳng thức. 2. Nắm vững các phương pháp phân tích đa thức thành nhân tử. 3. Nắm vững các phương pháp giải, biện luận phương trình bậc nhất, bậc hai, bậc cao, phương trình chứa ẩn ở mẫu. 4. Sử dụng thành thạo các ký hiệu toán học, logic (ký hiệu hội, tuyển, kéo theo, tương đương). 5. Kiến thức nền tảng về mặt phẳng tọa độ, hàm số bậc nhất, đường thẳng. 6. Kỹ năng vẽ đồ thị hàm số. 7. Kiến thức nền tảng về hệ số góc của đường thẳng, công thức độ dài, hệ thức lượng trong tam giác vuông, công thức lượng giác, đường tròn, hàm số bậc hai parabol, phương trình nghiệm nguyên. 8. Kiến thức nền tảng về giá trị tuyệt đối, căn thức, ước lượng – đánh giá, hàm số – đồ thị, bất đẳng thức – cực trị, giá trị lớn nhất, giá trị nhỏ nhất.

Nguồn: toanmath.com

Đọc Sách

Phân dạng các bài toán trong đề tuyển sinh lớp 10 môn Toán (2022 - 2023)
Tài liệu gồm 236 trang, được biên soạn bởi quý thầy, cô giáo nhóm Word – Giải – Tách Chuyên Đề Vào 10 Môn Toán, phân dạng và hướng dẫn giải chi tiết các bài toán trong đề thi tuyển sinh vào lớp 10 môn Toán năm học 2022 – 2023. Chuyên đề 1. Các bài toán về chủ đề: Căn bậc hai. Chuyên đề 2. Các bài toán về chủ đề: Hàm số. Chuyên đề 3. Các bài toán về chủ đề: Phương trình. Chuyên đề 4. Các bài toán về chủ đề: Hệ phương trình. Chuyên đề 5. Các bài toán về chủ đề: Giải bài toán bằng cách lập phương trình – hệ phương trình. Chuyên đề 6. Các bài toán về chủ đề: Bất đẳng thức. Chuyên đề 7. Các bài toán về chủ đề: Số học. Chuyên đề 8. Các bài toán về chủ đề: Hình học. Chuyên đề 9. Các bài toán hình thức: Trắc nghiệm.
Chùm bài toán tiếp tuyến - cát tuyến ôn thi vào lớp 10 môn Toán
Tài liệu gồm 44 trang, được biên soạn bởi thầy giáo Nguyễn Chí Thành, tuyển chọn 114 bài toán tiếp tuyến – cát tuyến ôn thi vào lớp 10 môn Toán, đây là dạng toán phổ biến trong các đề thi tuyển sinh lớp 10 môn Toán. Trích dẫn tài liệu chùm bài toán tiếp tuyến – cát tuyến ôn thi vào lớp 10 môn Toán: + Cho O R và điểm M nằm ngoài đường tròn. Kẻ tiếp tuyến MB với đường tròn dây BC vuông góc OM tại H. + Từ M kẻ cát tuyến MDD (tia MD nằm giữa tia MB và MO) gọi D1 là trung điểm DD OD BC D 1 2. Chứng minh các điểm 1 O C M B D cùng nằm trên một đường tròn, các điểm 1 2 M H D D cùng nằm trên một đường tròn. Chỉ ra các điểm 1 O C M B D đều cách đều trung điểm của OM (dựa vào tính chất trung tuyến tam giác vuông) hoặc các đỉnh 1 C B D đều nhìn MO dưới một góc vuông. Chỉ ra các điểm 1 2 M H D D đều cách đều trung điểm của D M2 (dựa vào tính chất trung tuyến tam giác vuông) hoặc 0 2 1 2 MHD MD D 90. + Đề bài có thể thay đổi thành: Chứng minh đường tròn ngoại tiếp HD D hoặc D OD luôn đi qua một điểm cố định hoặc tâm đường tròn ngoại tiếp HD D luôn chạy trên một đường thẳng cố định. Các em sẽ thấy, tứ giác OHDD là tứ giác nội tiếp nên đường tròn ngoại tiếp tam giác HD D luôn đi qua điểm cố định O và đường tròn ngoại tiếp tam giác OD D luôn đi qua điểm cố định H. Vì OHDD là tứ giác nội tiếp nên tâm đường tròn ngoại tiếp HD D luôn nằm trên đường trung trực đoạn OH.
102 bài toán bất đẳng thức và giá trị lớn nhất, giá trị nhỏ nhất chọn lọc
Tài liệu gồm 58 trang, được tổng hợp bởi thầy giáo Cù Minh Quảng, tuyển tập 102 bài toán bất đẳng thức và giá trị lớn nhất, giá trị nhỏ nhất chọn lọc, có đáp án và lời giải chi tiết, giúp học sinh ôn tập để chuẩn bị cho kỳ thi chọn học sinh giỏi Toán bậc THCS các cấp và ôn thi vào lớp 10 môn Toán.
Phương trình nghiệm nguyên chọn lọc
Tài liệu gồm 218 trang, tuyển tập các chủ đề phương trình nghiệm nguyên chọn lọc, giúp học sinh ôn tập để chuẩn bị cho kỳ thi chọn học sinh giỏi Toán bậc THCS các cấp và ôn thi vào lớp 10 môn Toán. MỤC LỤC : Phần 1 MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH NGHIỆM NGUYÊN 1. 1 PHƯƠNG PHÁP XÉT TÍNH CHIA HẾT 2. A Phương pháp phát hiện tính chia hết của một ẩn 2. B Phương pháp đưa về phương trình ước số 2. C Phương pháp biểu thị một ẩn theo ẩn còn lại rồi dùng tính chia hết 3. D Phương pháp xét số dư của từng vế 4. 2 PHƯƠNG PHÁP DÙNG BẤT ĐẲNG THỨC 8. A Phương pháp sắp thứ tự các ẩn 8. B Phương pháp xét từng khoảng giá trị của ẩn 9. C Phương pháp chỉ ra nghiệm nguyên 10. D Phương pháp sử dụng điều kiện để phương trình bậc hai có nghiệm 10. 3 PHƯƠNG PHÁP DÙNG TÍNH CHẤT CỦA SỐ CHÍNH PHƯƠNG 17. A Sử dụng tính chất về chia hết của số chính phương 17. B Tạo ra bình phương đúng 17. C Tạo ra tổng các số chính phương 18. D Xét các số chính phương liên tiếp 18. E Sử dụng điều kiện biệt số ∆ là số chính phương 19. F Sử dụng tính chất: 20. G Sử dụng tính chất: 21. 4 PHƯƠNG PHÁP LÙI VÔ HẠN, NGUYÊN TẮC CỰC HẠN 28. Phần 2 MỘT SỐ DẠNG PHƯƠNG TRÌNH NGHIỆM NGUYÊN 32. 1 PHƯƠNG TRÌNH MỘT ẨN 32. 2 PHƯƠNG TRÌNH BẬC NHẤT VỚI HAI ẨN 35. A Cách giải phương trình bậc nhất hai ẩn ax + by = c với nghiệm nguyên (a, b, c thuộc Z) 36. 3 PHƯƠNG TRÌNH BẬC HAI VỚI HAI ẨN 39. 4 PHƯƠNG TRÌNH BẬC BA HAI ẨN 57. 5 PHƯƠNG TRÌNH BẬC BỐN VỚI HAI ẨN 66. 6 PHƯƠNG TRÌNH ĐA THỨC VỚI BA ẨN TRỞ LÊN 76. 7 PHƯƠNG TRÌNH PHÂN THỨC 85. 8 PHƯƠNG TRÌNH MŨ 93. 9 PHƯƠNG TRÌNH VÔ TỈ 104. 10 HỆ PHƯƠNG TRÌNH VỚI NGHIỆM NGUYÊN 114. 11 TÌM ĐIỀU KIỆN ĐỂ PHƯƠNG TRÌNH CÓ NGHIỆM NGUYÊN 118. Phần 3 BÀI TOÁN ĐƯA VỀ GIẢI PHƯƠNG TRÌNH NGHIỆM NGUYÊN 125. 1 BÀI TOÁN VỀ SỐ TỰ NHIÊN VÀ CÁC CHỮ SỐ 125. 2 BÀI TOÁN VỀ TÍNH CHIA HẾT VÀ SỐ NGUYÊN TỐ 138. 3 BÀI TOÁN THỰC TẾ 152. Phần 4 PHƯƠNG TRÌNH NGHIỆM NGUYÊN MANG TÊN CÁC NHÀ TOÁN HỌC 159. 1 THUẬT TOÁN EUCLIDE VÀ PHƯƠNG PHÁP TÌM NGHIỆM RIÊNG ĐỂ GIẢI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN 159. A Mở đầu 159. B Cách giải tổng quát 160. C Ví dụ 161. D Cách tìm một nghiệm riêng của phương trình ax + by = c 161. 2 PHƯƠNG TRÌNH PELL 166. A Mở đầu 166. B Phương trình Pell 166. 3 PHƯƠNG TRÌNH PYTHAGORE 170. A Mở đầu 170. 4 PHƯƠNG TRÌNH FERMAT 175. A Định lí nhỏ Fermat 175. B Định lí lớn Fermat 175. C Lịch sử về chứng minh định lí lớn Fermat 176. D Chứng minh định lí lớn Fermat với n=4 177. 5 PHƯƠNG TRÌNH DIONPHANTE 180. Phần 5 NHỮNG PHƯƠNG TRÌNH NGHIỆM NGUYÊN CHƯA CÓ LỜI GIẢI 182. 1 CÒN NHIỀU PHƯƠNG TRÌNH NGHIỆM NGUYÊN CHƯA GIẢI ĐƯỢC 182. A Phương trình bậc ba với hai ẩn 182. B Phương trình bậc bốn với hai ẩn 183. C Phương trình bậc cao với hai ẩn 183. D Phương trình với ba ẩn trở lên 184. 2 NHỮNG BƯỚC ĐỘT PHÁ 185. Phần 6 PHƯƠNG TRÌNH NGHIỆM NGUYÊN QUA CÁC KỲ THI 187. 1 Trong các đề thi vào lớp 10 187. 2 Trong các đề thi học sinh giỏi quốc gia và quốc tế 209.