Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bàn về một cách tiếp cận khác cho bài toán tính góc giữa đường thẳng và mặt phẳng

Tài liệu gồm 07 trang, được biên soạn bởi Ths. Hoàng Minh Quân (giáo viên Toán trường THPT chuyên Nguyễn Huệ, Hà Nội), bàn về một cách tiếp cận khác cho bài toán tính góc giữa đường thẳng và mặt phẳng. Trong chương trình toán THPT, các bài toán về góc giữa đường thẳng và mặt phẳng tuy không mới. Song, nó vẫn mang tính thời sự trong các bài kiểm tra định kì, các kì thi học sinh giỏi, kì thi tốt nghiệp Trung học Phổ thông hằng năm. Bài viết sau đây khai thác một hướng tiếp cận khác cho bài toán tính góc giữa đường thẳng với mặt phẳng. 1. Kiến thức cơ bản 1.1. Định nghĩa: Cho đường thẳng a và mặt phẳng (a). Góc giữa đường thẳng a và hình chiếu a’ của nó trên mặt phẳng (a) được gọi là góc giữa đường thẳng a và mặt phẳng (a). 1.2. Các xác định góc giữa đường thẳng a và mặt phẳng (a). Cách 1: + Bước 1. Tìm O = a giao (a). + Bước 2. Lấy A thuộc a và dựng AH vuông góc (a) tại H . Khi đó (a;(a)) = (a;a’) = AOH. + Bước 3. Tính số đo của góc AOH. Chú ý: 0 =< (a;(a)) =< 90. Cách 2: Tính gián tiếp theo một trong hai hướng sau: + Hướng 1: Chọn một đường thẳng d // a mà góc giữa d và (a) có thể tính được. Từ đó ta có: (a;(a)) = (d;(a)). + Hướng 2: Chọn một mặt phẳng (b) // (a) mà góc giữa a và (b) có thể tính được. Từ đó ta có: (a;(a)) = (a;(b)). Tuy nhiên việc xác định hình chiếu của một điểm lên mặt phẳng không phải lúc nào cũng thuận lợi. Chính vì vậy, việc đưa ra một cách tiếp cận khác là sử dụng khoảng cách để tính góc giữa đường thẳng với mặt phẳng nhằm khắc phục khó khăn đó. 1.3. Định hướng tiếp cận: Cho đường thẳng a và mặt phẳng (a). Để tính góc x giữa đường thẳng a và mặt phẳng (a), ta tiếp cận thông qua ý tưởng đơn giản khác như sau: + Bước 1: Tìm O = a giao (a). + Bước 2: Tính sinx = d(A;(a))/OA. Cách tiếp cận này thích hợp cho học sinh nắm chắc việc tính khoảng cách từ một điểm đến một mặt phẳng. Sau đây chúng tôi đưa ra một số ví dụ minh hoạ với lời giải theo hướng tiếp cận sử dụng khoảng cách để tính góc giữa đường thẳng với mặt phẳng. 2. Ví dụ minh họa 2.1. Áp dụng cho các bài toán khối chóp. 2.2. Áp dụng cho các bài toán khối lăng trụ. 2.3. Bài tập tự luyện.

Nguồn: toanmath.com

Đọc Sách

75 câu trắc nghiệm khối đa diện - THPT Bình Phục Nhứt, Tiền Giang
Tài liệu gồm 7 trang với 75 bài toán trắc nghiệm thuộc chuyên đề khối đa diện của trường THPT Bình Phục Nhứt – Tiền Giang. Đáp án nằm ở trang cuối tài liệu. Trích dẫn tài liệu : + Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành: A. Một tứ diện đều và bốn hình chóp tam giác giác đều B. Năm tứ diện đều C. Bốn tứ diện đều và một hình chóp tam giác đều D. Năm hình chóp tam giác giác đều, không có tứ diện đều [ads] + Số cạnh của một khối chóp bất kì luôn là: A. Một số chẵn lớn hơn hoặc bằng 4 B. Một số lẻ C. Một số chẵn lớn hơn hoặc bằng 6 D. Một số lẻ lớn hơn hoặc bằng 5 + Kim tự tháp Kê-ốp ở Ai Cập được xây dựng vào khoảng 2500 năm trước Công nguyên. Kim tự tháp này là một khối chóp tứ giác đều có chiều cao 147 m, cạnh đáy dài 230 m. Thế tích của nó là: A. 2592100 m3 B. 2592100 m2 C. 7776300 m3 D. 3888150 m3
88 câu trắc nghiệm thể tích khối đa diện và mặt tròn xoay - Nguyễn Tất Thu
Tài liệu gồm 13 trang tuyển chọn 88 câu trắc nghiệm thể tích khối đa diện và mặt tròn xoay, tài liệu do thầy Nguyễn Tất Thu biên soạn. Trích dẫn tài liệu : + Trong các mệnh đề sau, mệnh đề nào sai? A. Hai khối chóp có diện tích đáy và chiều cao tương ứng bằng nhau thì bằng nhau B. Hai khối hộp chữ nhật có cùng diện tích toàn phần bằng nhau thì có thể tích bằng nhau C. Hai khối lăng trụ có diện tích đáy và chiều cao tương ứng bằng nhau có thể tích bằng nhau D. Hai khối hộp lập phương có cùng diện tích toàn phần bằng nhau thì có thể tích bằng nhau [ads] + Cho ba điểm A, B, C cùng thuộc một mặt cầu và cho biết góc ACB = 90 độ. Ta đưa ra các khẳng định sau: 1: Đường tròn đi qua ba điểm A,B,C nằm trên mặt cầu 2: AB là một đường kính của mặt cầu đã cho 3: AB không là đường kính của mặt cầu đã cho 4: AB là đường kính của đường tròn giao tuyến tạo bởi mặt cầu và mặt phẳng (ABC) Trong các khẳng đỉnh trên, những khẳng định nào đúng? A. 1, 2   B. 2, 4 C. 1, 4   D. 2, 3 + Trong các mệnh đề sau, mệnh đề nào sai? A. Mặt trụ và mặt nón chứa các đường thẳng B. Có vô số mặt phẳng cắt mặt cầu theo những đường tròn bằng nhau C. Luôn có hai đường tròn có bán kính khác nhau cũng nằm trên một mặt nón D. Mọi hình chóp luôn nội tiếp trong mặt cầu.
350 câu hỏi trắc nghiệm chuyên đề hình học không gian - Nhóm Toán
Tài liệu 350 câu hỏi trắc nghiệm chuyên đề hình học không gian được hoàn thiện và chia sẻ bởi các thành viên trong groups nhóm Toán, gồm 62 trang được chia thành 7 đề, mỗi đề gồm 50 câu hỏi. Trích dẫn tài liệu : + Chọn khẳng định đúng: A. Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì hai đường thẳng đó song song với nhau B. Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì hai đường thẳng đó song song với nhau C. Hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì hai đường thẳng đó song song với nhau D. Hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì hai đường thẳng đó song song với nhau [ads] + Trong các mệnh đề sau, mệnh đề nào đúng? A. Tồn tại một hình đa diện có số đỉnh và số mặt bằng nhau B. Tồn tại một hình đa diện có số cạnh bằng số đỉnh C. Số đỉnh và số mặt của một hình đa diện luôn luôn bằng nhau D. Tồn tại một hình đa diện có số cạnh và số mặt bằng nhau + Cho khối tứ diện đều ABCD. Điểm M thuộc miền trong của khối tứ diện sao cho thể tích các khối MBCD, MCDA, MDAB, MABC bằng nhau. Khi đó: A. Tất cả các mệnh đề trên đều đúng B. M cách đều tất cả các mặt của khối tứ diện đó C. M là trung điểm của đôạn thẳng nối trung điểm của 2 cạch đối diện của tứ diện D. M cách đều tất cả các đỉnh của khối tứ diện đó
225 bài toán hình học không gian trong các đề thi thử 2016 - Trần Văn Tài
Tài liệu 225 bài toán hình học không gian trong các đề thi thử 2016 do thầy Trần Văn Tài biên soạn, các bài toán được giải chi tiết. Trích dẫn tài liệu : + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 4a, cạnh SA vuông góc với mặt phẳng đáy. Góc giữa cạnh SC và mặt phẳng (ABCD) bằng 60 độ, M là trung điểm của BC, N là điểm thuộc cạnh AD sao cho DN = a. Tính theo a thể tích khối chóp S.ABCD và khoảng cách giữa hai đường thẳng SB và MN. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = 2a, AD = a√3. Mặt bên SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy. Biết đường thẳng SD tạo với mặt đáy một góc 45 độ. Tính thể tích của khối chóp S.ABCD và khoảng cách giữa hai đường thẳng SA và BD. + Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Đường thẳng SA vuông góc với mặt đáy. Góc giữa đường thẳng SB và mặt phẳng (ABC) bằng 60 độ. 1. Tính thể tích khối chóp S.ABC theo a. 2. Tính khoảng cách giữa hai đường thẳng AC và SB theo a.