Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng Toán 9 năm 2019 - 2020 phòng GDĐT Hà Đông - Hà Nội

Thứ Tư ngày 10 tháng 06 năm 2020, phòng Giáo dục và Đào tạo quận Hà Đông, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 9 năm học 2019 – 2020. Đề khảo sát chất lượng Toán 9 năm 2019 – 2020 phòng GD&ĐT Hà Đông – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, học sinh có 120 phút để làm bài thi, đề thi có đáp số và lời giải chi tiết. Trích dẫn đề khảo sát chất lượng Toán 9 năm 2019 – 2020 phòng GD&ĐT Hà Đông – Hà Nội : + Khi uống trà sữa, người ta thường dùng ống hút bằng nhựa hình trụ có đường kính đáy 0,9cm, độ dài trục 21cm. Hỏi khi thải ra ngoài môi trường, diện tích nhựa gây ô nhiễm môi trường do 1000 ống hút gây ra là bao nhiêu? [ads] + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một người mua một cái bàn là và một cái quạt điện với tổng số tiền theo giá niêm yết là 850 nghìn đồng. Khi trả tiền người đó được khuyến mại giảm 20% đối với giá tiền bàn là và 10% đối với giá tiền quạt điện so với giá niêm yết. Vì vậy, người đó phải trả tổng cộng 740 nghìn đồng. Tính giá tiền của cái bàn là và cái quạt điện theo giá niêm yết. + Cho phương trình x^4 – 2mx^2 + m^2 – 4 = 0. a) Giải phương trình với m = 3. b) Tìm m để phương trình có 3 nghiệm phân biệt.

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra học kì 2 (HK2) lớp 9 môn Toán năm 2018 – 2019 trường chuyên Hà Nội – Amsterdam
Nội dung Đề kiểm tra học kì 2 (HK2) lớp 9 môn Toán năm 2018 – 2019 trường chuyên Hà Nội – Amsterdam Bản PDF - Nội dung bài viết Chia sẻ bài toán Đề kiểm tra học kì 2 Toán lớp 9 trường chuyên Hà Nội – Amsterdam Chia sẻ bài toán Đề kiểm tra học kì 2 Toán lớp 9 trường chuyên Hà Nội – Amsterdam Sytu muốn giới thiệu đến bạn đọc đề kiểm tra kỳ 2 môn Toán lớp 9 năm học 2018 – 2019 tại trường chuyên Hà Nội – Amsterdam. Đề thi bao gồm 05 bài toán tự luận, thời gian làm bài là 120 phút, và kỳ thi được tổ chức vào ngày 18 tháng 03 năm 2019. Các bài toán trong đề kiểm tra sẽ đòi hỏi học sinh phải áp dụng kiến thức và kỹ năng Toán một cách linh hoạt và chính xác để giải quyết các vấn đề được đưa ra. Đây là cơ hội để học sinh thể hiện khả năng tư duy logic và giải quyết vấn đề
Đề kiểm tra khảo sát lớp 9 môn Toán năm 2018 2019 phòng GD ĐT Thanh Xuân Hà Nội
Nội dung Đề kiểm tra khảo sát lớp 9 môn Toán năm 2018 2019 phòng GD ĐT Thanh Xuân Hà Nội Bản PDF - Nội dung bài viết Đề kiểm tra khảo sát Toán lớp 9 năm 2018 – 2019 phòng GD&ĐT Thanh Xuân – Hà Nội Đề kiểm tra khảo sát Toán lớp 9 năm 2018 – 2019 phòng GD&ĐT Thanh Xuân – Hà Nội Đề kiểm tra Toán lớp 9 năm 2018 – 2019 phòng GD&ĐT Thanh Xuân – Hà Nội bao gồm 5 bài toán tự luận trên 1 trang giấy. Thời gian làm bài là 120 phút, kỳ thi diễn ra vào thứ Sáu ngày 15 tháng 03 năm 2019. Trích dẫn đề kiểm tra Toán lớp 9 năm 2018 – 2019 phòng GD&ĐT Thanh Xuân – Hà Nội: + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Có một đội công nhân cần sản xuất 900 sản phẩm trong số ngày nhất định. Nhưng vì mỗi ngày họ sản xuất thêm 3 sản phẩm, nên họ đã vượt mục tiêu 90 sản phẩm và hoàn thành sớm 3 ngày. Hỏi theo kế hoạch, mỗi ngày đội công nhân cần sản xuất bao nhiêu sản phẩm? + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = 2(m – 1)x + 5 – 2m (với m là tham số) và parabol (P): y = x^2. a) Chứng minh rằng với mọi giá trị của m, đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt. b) Tìm giá trị của m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt, mà tổng tung độ của hai điểm đó bằng 30. + Cho đường tròn (O; R) và một điểm A nằm ngoài đường tròn sao cho OA = 2R. Từ A kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). M là điểm bất kỳ trên cung nhỏ BC, tiếp tuyến tại M của đường tròn cắt các đường thẳng AB, AC lần lượt tại E và F. a) Chứng minh tứ giác ABOC là tứ giác nội tiếp. b) Chứng minh tam giác ABC là tam giác đều. c) Chứng minh khi M di chuyển trên cung nhỏ BC, chu vi tam giác AEF không đổi. Tính chu vi tam giác AEF theo R. d) Xác định vị trí của M trên cung nhỏ BC sao cho đoạn EF có độ dài nhỏ nhất.
Đề khảo sát lớp 9 môn Toán lần 2 năm 2018 2019 trường THCS Đại Áng Hà Nội
Nội dung Đề khảo sát lớp 9 môn Toán lần 2 năm 2018 2019 trường THCS Đại Áng Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát lớp 9 môn Toán lần 2 năm 2018-2019 trường THCS Đại Áng Hà Nội Đề khảo sát lớp 9 môn Toán lần 2 năm 2018-2019 trường THCS Đại Áng Hà Nội Vào Chủ Nhật ngày 03 tháng 03 năm 2019, trường Trung học Cơ sở Đại Áng, Thanh Trì – Hà Nội đã tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 9 lần 2 năm học 2018-2019. Kỳ thi bao gồm 05 bài toán tự luận, học sinh có thời gian 120 phút để hoàn thành bài thi. Mục tiêu của kỳ thi là kiểm tra năng lực Toán của học sinh lớp 9 vào giữa học kỳ 2 năm học 2018-2019, cũng như giúp học sinh chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2019-2020. Trích đề khảo sát Toán lớp 9 lần 2 năm 2018-2019 trường THCS Đại Áng – Hà Nội: Bài 1: Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một xe ô tô dự định đi từ tỉnh A đến tỉnh B với vận tốc 40 km/h. Lúc đầu ô tô đi với vận tốc đó, khi còn 60 km nữa thì được nửa quãng đường AB người lái xe quyết định tăng vận tốc thêm 10 km/h trên quãng đường còn lại. Kết quả là xe đến B sớm hơn 1 giờ so với dự định. Hãy tính quãng đường AB? Bài 2: Cho parabol (P): y=x^2 và đường thẳng (d): y = mx + 3 (m là tham số). a) Chứng minh rằng (d) luôn cắt (P) tại 2 điểm phân biệt. b) Biết A(2; 4) là một trong 2 giao điểm của (d) và (P). Hãy tìm giá trị của m? Bài 3: Xác định vị trí của các điểm A, B, C, D, E, và F theo yêu cầu sau: - Điểm H thuộc đoạn thẳng AO và không trùng với A hoặc O. - Đường thẳng vuông góc với AD và đi qua H cắt nửa đường tròn (O) tại C. - Trên cung BC của nửa đường tròn, chọn điểm D bất kì (D khác B và C), và tiếp tuyến tại D cắt HC tại E. - Gọi I là giao điểm giữa AD và HC. Chứng minh rằng tứ giác HBDI nội tiếp, tam giác DEI cân, và góc ABF có giá trị không đổi khi D thay đổi trên cung BC (D khác B và C). Đề thi khảo sát Toán lớp 9 lần 2 năm 2018-2019 của trường THCS Đại Áng mang tính chất thực tế, khuyến khích học sinh sử dụng kiến thức và kỹ năng tự học để giải quyết các bài toán phức tạp.