Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG Toán THCS năm 2022 - 2023 phòng GDĐT Buôn Ma Thuột - Đắk Lắk

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp thành phố môn Toán bậc THCS năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Buôn Ma Thuột, tỉnh Đắk Lắk; kỳ thi được diễn ra vào ngày 02 tháng 03 năm 2023. Trích dẫn Đề thi HSG Toán THCS năm 2022 – 2023 phòng GD&ĐT Buôn Ma Thuột – Đắk Lắk : + Biển Chết là hồ nước mặn nhất trên Trái Đất. Đây là nơi hoàn toàn bị bao bọc mà không có nước biển thoát ra ngoài. Điểm độc đáo của biển Chết là sở hữu độ mặn cao gấp 9,6 lần so với nước biển thường. Đây là một trong những điểm du lịch độc đáo, du khách không bao giờ bị chìm và tận hưởng công dụng của muối biển đối với sức khỏe (biết rằng, nước biển thường có độ mặn là 3,5%). Thầy Phương lấy 500g nước biển Chết và 400g nước biển thường rồi đổ chung vào một cái thùng. Sau đó, thầy cho thêm vào thùng 10 lít nước ngọt nữa. Hỏi nước trong thùng có thể là nước lợ được không? Biết nước lợ có độ mặn dao động từ 0,5% đến 17/30%, xem lượng muối trong nước ngọt không đáng kể và 1 lít nước ngọt nặng 1kg. + Gen B có 3600 liên kết Hiđro và số Nucleotit loại T lớn hơn số Nucleotit không bổ sung với nó là 300 Nucleotit. Tính số Nucleotit từng loại của gen B. Biết rằng, để tính số lượng Nucleotit (A, T, G, X) trong phân tử ADN, ta áp dụng nguyên tắc bổ sung: “A liên kết với T bằng 2 liên kết Hiđro và G liên kết với X bằng 3 liên kết Hiđro” và %A = %T, %G = %X. Tổng số Nucleotit trong gen B: N = A + T + G + X = 2A + 2G = 2T + 2X. + Cho hình vuông ABCD có cạnh bằng a. N là điểm tùy ý thuộc cạnh AB. Gọi E là giao điểm của CN và DA. Vẽ tia Cx vuông góc với CE và cắt AB tại F. Lấy M là trung điểm của EF. a) Chứng minh: CM vuông góc với EF. b) Chứng minh: NB.DE = a2 và B, D, M thẳng hàng. c) Tìm vị trí của N trên AB sao cho diện tích của tứ giác ACFE gấp 3 lần diện tích của hình vuông ABCD.

Nguồn: toanmath.com

Đọc Sách

Đề Olympic chuyên Toán THCS lần 1 năm 2023 - 2024 trường chuyên Hạ Long Quảng Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi Olympic chuyên môn Toán dành cho học sinh THCS lần thứ nhất năm học 2023 – 2024 trường THPT chuyên Hạ Long, tỉnh Quảng Ninh; kỳ thi được diễn ra vào ngày 31 tháng 03 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề Olympic chuyên Toán THCS lần 1 năm 2023 – 2024 trường chuyên Hạ Long – Quảng Ninh : + Cho một mạng lưới các ô vuông kích thước 5 5 trong đó có khuyết một hình vuông kích thước 2 2 như hình vẽ. Một người đứng ở điểm A cần di chuyển đến điểm B, biết mỗi bước đi chỉ có thể đi lên trên hoặc sang phải theo đỉnh mỗi ô vuông kích thước 1 1. Hỏi có bao nhiêu cách để người đó có thể di chuyển từ A đến B. + Cho tam giác ABC không cân có đường tròn nội tiếp I tiếp xúc với các cạnh BC CA AB lần lượt tại D E F. Điểm K là hình chiếu vuông góc của D trên đường thẳng EF đường thẳng qua K vuông góc với IK cắt các đường thẳng CA BA lần lượt tại V U. a) Chứng minh rằng tứ giác AVIU nội tiếp và UF VE. b) Chứng minh rằng KF DB KE DC. c) Gọi E’ là tiếp điểm của đường tròn bàng tiếp góc B của tam giác ABC với AC F là tiếp điểm của đường tròn bàng tiếp góc C của tam giác ABC với AB. Chứng minh các điểm E F U V cùng thuộc một đường tròn. + Chứng minh rằng với mọi số nguyên dương m số 4(8 7) m không thể viết được dưới dạng tổng của ba số chính phương (số chính phương là bình phương của một số nguyên).
Đề khảo sát HSG Toán 9 lần 3 năm 2023 - 2024 phòng GDĐT Tam Kỳ - Quảng Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát học sinh giỏi môn Toán 9 lần 3 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Tam Kỳ, tỉnh Quảng Nam; kỳ thi được diễn ra vào ngày 06 tháng 03 năm 2024.
Đề học sinh giỏi cấp tỉnh Toán THCS năm 2023 - 2024 sở GDĐT Hà Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Hà Giang; kỳ thi được diễn ra vào ngày 29 tháng 03 năm 2024. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2023 – 2024 sở GD&ĐT Hà Giang : + Cho a, b, c là các số nguyên, đôi một nguyên tố cùng nhau thỏa mãn (a – c)(b – c) = c2. Chứng minh tích abc là số chính phương. + Cho a, b là các số thực không âm thỏa mãn điều kiện a + b = 3. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = (a4 + 1)(b4 + 1) – 4ab. + Cho tam giác ABC không cân (AB < AC), nội tiếp đường tròn tâm O. Gọi AD (D thuộc BC) là đường cao của tam giác ABC, AM là đường kính của đường tròn tâm O, K là hình chiếu của B lên AM. a) Chứng minh ABDK là tứ giác nội tiếp và DK vuông góc với AC. b) Gọi E, F lần lượt là trung điểm của đoạn thẳng BD, CM. Chứng minh AEF = 90°.
Đề học sinh giỏi cấp tỉnh Toán 9 năm 2023 - 2024 sở GDĐT Long An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi văn hóa cấp tỉnh môn Toán 9 THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Long An; kỳ thi được diễn ra vào ngày 31 tháng 03 năm 2024. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 9 năm 2023 – 2024 sở GD&ĐT Long An : + Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O;R). Ba đường cao AD, BE và CF của tam giác ABC đồng quy tại H (các điểm D, E và F lần lượt thuộc các cạnh BC, AC và AB). Các đường thẳng AD, BE và CF lần lượt cắt đường tròn (O) tại K, M và N (các điểm K, M và N lần lượt không trùng với các điểm A, B và C). a) Chứng minh H là tâm đường tròn nội tiếp tam giác DEF. b) MK cắt AC tại P, NK cắt AB tại Q. Chứng minh ba điểm Q, H, P thẳng hàng. c) Tính giá trị của biểu thức T. + Cho tam giác ABC vuông tại A. Đường tròn nội tiếp tam giác ABC có bán kính bằng r và BC = a. Chứng minh. + Cho a, b, c là các số thực dương thỏa mãn a + b + c = 1. Tìm giá trị nhỏ nhất của biểu thức P.