Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG Toán THCS năm 2022 - 2023 phòng GDĐT Buôn Ma Thuột - Đắk Lắk

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp thành phố môn Toán bậc THCS năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Buôn Ma Thuột, tỉnh Đắk Lắk; kỳ thi được diễn ra vào ngày 02 tháng 03 năm 2023. Trích dẫn Đề thi HSG Toán THCS năm 2022 – 2023 phòng GD&ĐT Buôn Ma Thuột – Đắk Lắk : + Biển Chết là hồ nước mặn nhất trên Trái Đất. Đây là nơi hoàn toàn bị bao bọc mà không có nước biển thoát ra ngoài. Điểm độc đáo của biển Chết là sở hữu độ mặn cao gấp 9,6 lần so với nước biển thường. Đây là một trong những điểm du lịch độc đáo, du khách không bao giờ bị chìm và tận hưởng công dụng của muối biển đối với sức khỏe (biết rằng, nước biển thường có độ mặn là 3,5%). Thầy Phương lấy 500g nước biển Chết và 400g nước biển thường rồi đổ chung vào một cái thùng. Sau đó, thầy cho thêm vào thùng 10 lít nước ngọt nữa. Hỏi nước trong thùng có thể là nước lợ được không? Biết nước lợ có độ mặn dao động từ 0,5% đến 17/30%, xem lượng muối trong nước ngọt không đáng kể và 1 lít nước ngọt nặng 1kg. + Gen B có 3600 liên kết Hiđro và số Nucleotit loại T lớn hơn số Nucleotit không bổ sung với nó là 300 Nucleotit. Tính số Nucleotit từng loại của gen B. Biết rằng, để tính số lượng Nucleotit (A, T, G, X) trong phân tử ADN, ta áp dụng nguyên tắc bổ sung: “A liên kết với T bằng 2 liên kết Hiđro và G liên kết với X bằng 3 liên kết Hiđro” và %A = %T, %G = %X. Tổng số Nucleotit trong gen B: N = A + T + G + X = 2A + 2G = 2T + 2X. + Cho hình vuông ABCD có cạnh bằng a. N là điểm tùy ý thuộc cạnh AB. Gọi E là giao điểm của CN và DA. Vẽ tia Cx vuông góc với CE và cắt AB tại F. Lấy M là trung điểm của EF. a) Chứng minh: CM vuông góc với EF. b) Chứng minh: NB.DE = a2 và B, D, M thẳng hàng. c) Tìm vị trí của N trên AB sao cho diện tích của tứ giác ACFE gấp 3 lần diện tích của hình vuông ABCD.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi thành phố Toán THCS năm 2022 - 2023 sở GDĐT Hải Phòng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp thành phố môn Toán 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo thành phố Hải Phòng; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 28 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi thành phố Toán THCS năm 2022 – 2023 sở GD&ĐT Hải Phòng : + Cho ∆ABC nhọn không cân tại đỉnh A, nội tiếp đường tròn (O). Kẻ đường cao AH của ∆ ABC H BC. Gọi P Q lần lượt là chân đường vuông góc kẻ từ H đến các đường thẳng AB AC. a) Chứng minh tứ giác BCQP nội tiếp. b) Hai đường thẳng PQ và BC cắt nhau tại M, đường thẳng AM cắt đường tròn (O) tại điểm thứ hai là K (K khác A). Chứng minh rằng 2 MH MK MA. c) Gọi I là tâm đường tròn ngoại tiếp tứ giác BCQP. Chứng minh ba điểm IHK thẳng hàng. + Tìm độ dài nhỏ nhất của cạnh một hình vuông sao cho có thể đặt vào trong nó 5 hình tròn có bán kính bằng 1, biết rằng các hình tròn này đôi một không có quá một điểm chung. + Chứng minh rằng 3 6 6 6 … 6 1 5 6 27 3 6 6 … 6 (trong đó biểu thức chứa căn có 2023 dấu căn ở tử số và 2022 dấu căn ở mẫu số).
Đề HSG Toán 9 cấp huyện năm 2022 - 2023 phòng GDĐT Đoan Hùng - Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 THCS cấp huyện năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Đoan Hùng, tỉnh Phú Thọ; đề thi hình thức 40% trắc nghiệm + 60% tự luận, thời gian làm bài 150 phút (không kể thời gian giao đề); đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề HSG Toán 9 cấp huyện năm 2022 – 2023 phòng GD&ĐT Đoan Hùng – Phú Thọ : + Cho tam giác đều ABC nội tiếp đường tròn (O), gọi H là trung điểm của cạnh BC, M là điểm bất kỳ thuộc đoạn BH (M khác B). Lấy điểm N thuộc đoạn thẳng CA sao cho CN BM. Gọi I là trung điểm của MN. a) Chứng minh rằng bốn điểm OM H I cùng thuộc một đường tròn. b) Gọi P là giao điểm của OI và AB. Chứng minh rằng tam giác MNP đều. c) Xác định vị trí điểm M để tam giác IAB có chu vi nhỏ nhất. + Một chiếc đu quay có bán kính 75m, tâm của vòng quay ở độ cao 90m, thời gian thực hiện mỗi vòng quay của đu quay là 30 phút. Nếu một người vào cabin tại vị trí thấp nhất của vòng quay, thì sau 20 phút quay, người đó ở độ cao bao nhiêu mét? + Cho P x là một đa thức bậc n với hệ số nguyên, n ≥ 2. Biết P P 1 2 2023. Chứng minh rằng phương trình P x 0 không có nghiệm nguyên.
Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 - 2023 sở GDĐT Lạng Sơn
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Lạng Sơn; kỳ thi được diễn ra vào ngày 28 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 – 2023 sở GD&ĐT Lạng Sơn : + Cho tam giác ABC nhọn, nội tiếp (O), AB < AC. Phân giác trong của BAC cắt BC tại D và cắt (O) tại điểm thứ hai P. Gọi M là giao điểm của OP và BC; F đối xứng với D qua M. Lấy điểm H nằm trên AO và E nằm trên AD sao cho HD; FE cùng vuông góc với BC. a. Chứng minh rằng AHD và PFE là các tam giác cân. b. Gọi K là giao điểm của HD và FP. Chứng minh rằng tứ giác BHCK nội tiếp trong một đường tròn (O1). c. Gọi T là giao điểm của (O1) và tia DA. Gọi Q là giao điểm của HT và BC. Chứng minh rằng AQ là tiếp tuyến của (O). + Tìm các số nguyên dương x, y, z thỏa mãn: 3x² – 9y² + 4z² + 6y²z² = 243. + Cho một đa giác đều có 2023 đỉnh. Đánh dấu các đỉnh của đa giác bằng một trong hai chữ số 0 và 1. Chứng minh rằng luôn chọn ra được ba đỉnh của đa giác được đánh dấu giống nhau và tạo thành một tam giác cân.
Đề HSG Toán 9 cấp huyện năm 2022 - 2023 phòng GDĐT Thanh Sơn - Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp huyện năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Thanh Sơn, tỉnh Phú Thọ; đề thi hình thức 40% trắc nghiệm + 60% tự luận, thời gian làm bài 150 phút (không kể thời gian giao đề); đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề HSG Toán 9 cấp huyện năm 2022 – 2023 phòng GD&ĐT Thanh Sơn – Phú Thọ : + Cho tam giác ABC vuông tại A có đường cao AH. Qua B vẽ đường thẳng vuông góc với BC cắt đường thẳng AC tại D. Tia phân giác của góc C cắt AB tại N và BD tại M. Hệ thức nào sau đây đúng? + Sau buổi sinh hoạt ngoại khóa, nhóm của Hằng rủ nhau đi ăn kem. Do quán mới khai trương nên có khuyến mại, bắt đầu từ ly kem thứ 5 giá mỗi ly kem được giảm 1500 (đồng) so với giá ban đầu. Nhóm của Hằng mua 9 ly kem với số tiền là 154 500 (đồng). Hỏi nếu nhóm của Hằng mua 15 ly kem thì hết bao nhiêu tiền? + Cho tam giác ABC nhọn, nội tiếp đường tròn (O; R), đường kính AK. Các đường cao AD, BE, CF cắt nhau tại H. Đường thẳng EF cắt đường tròn (O) tại hai điểm P, Q (P và C nằm khác phía đối với AB). Gọi M là trung điểm của BC. a) Chứng minh: Tứ giác BHCK là hình bình hành và OAC BAH. b) Chứng minh: 2 2 AP AQ 2AD OM. c) Khi BC cố định và A di động trên đường tròn (O). Chứng minh đường thẳng đi qua H và song song với AO luôn đi qua một điểm cố định.