Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề làm quen với xác suất của biến cố lớp 7 môn Toán

Nội dung Chuyên đề làm quen với xác suất của biến cố lớp 7 môn Toán Bản PDF - Nội dung bài viết Chuyên đề làm quen với xác suất của biến cố lớp 7 môn ToánPHẦN I. TÓM TẮT LÍ THUYẾTPHẦN II. CÁC DẠNG BÀIDạng 1. Xác suất của biến cố đồng khả năng xảy raDạng 2. Áp dụng công thức tính xác suấtDạng 3. Xác suất của biến cố chắc chắn, không thểDạng 4. Xác suất của biến cố ngẫu nhiênPHẦN III. BÀI TẬP TỰ LUYỆN Chuyên đề làm quen với xác suất của biến cố lớp 7 môn Toán Tài liệu này bao gồm 44 trang, chia thành hai phần chính: Tóm tắt lí thuyết và Hướng dẫn giải các dạng bài tập chuyên đề làm quen với xác suất của biến cố trong chương trình môn Toán lớp 7. PHẦN I. TÓM TẮT LÍ THUYẾT Trong phần này, chúng ta sẽ được tóm tắt lý thuyết về xác suất của biến cố đồng khả năng xảy ra và các quy tắc cơ bản trong tính toán xác suất. PHẦN II. CÁC DẠNG BÀI Phần này chứa các dạng bài tập thực hành nhằm giúp học sinh hiểu rõ hơn về xác suất của biến cố trong các tình huống thực tế. Các dạng bài bao gồm: Dạng 1. Xác suất của biến cố đồng khả năng xảy ra Nếu chỉ xảy ra A hoặc B (cả A B là hai biến cố đồng khả năng xảy ra), thì xác suất của chúng bằng nhau và bằng 0,5. Trong trường hợp có k biến cố đồng khả năng và chỉ xảy ra duy nhất một biến cố trong số đó, xác suất của mỗi biến cố đó đều bằng 1/k. Dạng 2. Áp dụng công thức tính xác suất Trong dạng này, chúng ta sẽ học cách tính xác suất bằng cách đếm số phần tử của tất cả các trường hợp có thể xảy ra, sau đó tính số kết quả thỏa mãn yêu cầu bài toán và áp dụng công thức tính xác suất. Dạng 3. Xác suất của biến cố chắc chắn, không thể Trình bày và phân tích khả năng xảy ra của từng biến cố bằng cách xác định xem biến cố đó có khả năng xảy ra (a = 1) hay không thể xảy ra (a = 0). Dạng 4. Xác suất của biến cố ngẫu nhiên Bước 1: Xác định số lần xảy ra của biến cố đang xét. Bước 2: Xác định số biến cố của thực nghiệm. Bước 3: Xác suất của biến cố là tỉ số giữa số lần xảy ra của biến cố và số biến cố của thực nghiệm. PHẦN III. BÀI TẬP TỰ LUYỆN Phần này chứa các bài tập tự luyện giúp học sinh rèn luyện kỹ năng tính toán và áp dụng lý thuyết xác suất vào các bài tập cụ thể.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề sự đồng quy của ba trung tuyến, ba đường phân giác trong một tam giác lớp 7 môn Toán
Nội dung Chuyên đề sự đồng quy của ba trung tuyến, ba đường phân giác trong một tam giác lớp 7 môn Toán Bản PDF - Nội dung bài viết Chuyên đề sự đồng quy của ba trung tuyến, ba đường phân giác trong một tam giác lớp 7 môn Toán Chuyên đề sự đồng quy của ba trung tuyến, ba đường phân giác trong một tam giác lớp 7 môn Toán Bộ tài liệu này bao gồm 56 trang, cung cấp tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề sự đồng quy của ba trung tuyến, ba đường phân giác trong môn Toán lớp 7. CHUYÊN ĐỀ 1. SỰ ĐỒNG QUY CỦA BA ĐƯỜNG TRUNG TUYẾN TRONG MỘT TAM GIÁC: PHẦN I. TÓM TẮT LÍ THUYẾT: Bao gồm các thông tin cần biết về tính chất của ba đường trung tuyến trong tam giác. PHẦN II. CÁC DẠNG BÀI: Dạng 1: Sử dụng tính chất trọng tâm của tam giác để giải bài tập. Dạng 2: Chứng minh một điểm là trọng tâm của tam giác theo các phương pháp cụ thể. Dạng 3: Xử lý vấn đề về đường trung tuyến trong tam giác vuông, tam giác cân, tam giác đều. PHẦN III. BÀI TẬP TỰ LUYỆN. CHUYÊN ĐỀ 2. SỰ ĐỒNG QUY CỦA BA ĐƯỜNG PHÂN GIÁC TRONG MỘT TAM GIÁC: PHẦN I. TÓM TẮT LÍ THUYẾT: Giải thích các tính chất của ba đường phân giác trong tam giác và cách áp dụng chúng. PHẦN II. CÁC DẠNG BÀI: Dạng 1: Chứng minh các đoạn thẳng bằng nhau, góc bằng nhau trong tam giác. Dạng 2: Chứng minh ba đường đồng quy, ba điểm thẳng hàng trong tam giác. Dạng 3: Xử lý đường phân giác đối với tam giác đặc biệt như tam giác cân, tam giác đều. Dạng 4: Chứng minh mối quan hệ giữa các góc trong tam giác bằng cách sử dụng tia phân giác và định lí tổng ba góc trong tam giác bằng 180 độ. PHẦN III. BÀI TẬP TỰ LUYỆN.
Chuyên đề quan hệ giữa ba cạnh của một tam giác lớp 7 môn Toán
Nội dung Chuyên đề quan hệ giữa ba cạnh của một tam giác lớp 7 môn Toán Bản PDF - Nội dung bài viết Chuyên đề quan hệ giữa ba cạnh của một tam giác lớp 7 môn ToánPHẦN I: TÓM TẮT LÍ THUYẾTPHẦN II: CÁC DẠNG BÀIDạng 1: Khẳng định có tồn tại hay không một tam giác biết độ dài ba cạnh.Dạng 2: Chứng minh các bất đẳng thức về độ dài.PHẦN III: BÀI TẬP TỰ LUYỆN Chuyên đề quan hệ giữa ba cạnh của một tam giác lớp 7 môn Toán Để giúp học sinh lớp 7 nắm vững kiến thức về quan hệ giữa ba cạnh của một tam giác, tài liệu này bao gồm 18 trang với nội dung chính được chia thành ba phần chính. PHẦN I: TÓM TẮT LÍ THUYẾT Phần này tóm tắt những điều cơ bản về quan hệ giữa độ dài ba cạnh của một tam giác. Học sinh sẽ biết được điều kiện cần và đủ để tồn tại một tam giác dựa trên độ dài ba cạnh. PHẦN II: CÁC DẠNG BÀI Phần này là nơi học sinh sẽ học cách giải các dạng bài tập liên quan đến quan hệ giữa ba cạnh của tam giác. Điều này bao gồm chứng minh các bất đẳng thức về độ dài các cạnh và cách áp dụng bất đẳng thức tam giác. Dạng 1: Khẳng định có tồn tại hay không một tam giác biết độ dài ba cạnh. Trong dạng bài này, học sinh sẽ học được cách xác định xem có thể tạo thành một tam giác từ ba độ dài cạnh đã cho. Điều kiện cần và đủ để tồn tại một tam giác sẽ được giải thích rõ ràng. Dạng 2: Chứng minh các bất đẳng thức về độ dài. Đây là phần mở rộng kiến thức về bất đẳng thức tam giác. Học sinh sẽ được hướng dẫn cách chứng minh các bất đẳng thức và biến đổi chúng để giải quyết các bài tập. PHẦN III: BÀI TẬP TỰ LUYỆN Để giúp học sinh nắm chắc kiến thức, phần này chứa các bài tập tự luyện mà học sinh có thể làm để ôn tập và củng cố kiến thức về quan hệ giữa ba cạnh của tam giác. Qua tài liệu này, hy vọng học sinh sẽ hiểu rõ hơn về quan hệ giữa ba cạnh của tam giác và tự tin trong việc giải các bài tập liên quan trong chương trình Toán lớp 7.
Chuyên đề quan hệ giữa đường vuông góc và đường xiên lớp 7 môn Toán
Nội dung Chuyên đề quan hệ giữa đường vuông góc và đường xiên lớp 7 môn Toán Bản PDF - Nội dung bài viết Chuyên đề quan hệ giữa đường vuông góc và đường xiên lớp 7 môn Toán Chuyên đề quan hệ giữa đường vuông góc và đường xiên lớp 7 môn Toán Tài liệu này bao gồm 20 trang, tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề quan hệ giữa đường vuông góc và đường xiên trong chương trình môn Toán lớp 7. PHẦN I. TÓM TẮT LÍ THUYẾT: Trình bày về khái niệm đường vuông góc và đường xiên, cách nhận biết chúng và tính khoảng cách từ một điểm đến một đường thẳng. PHẦN II. CÁC DẠNG BÀI: Dạng 1: Nhận biết đường vuông góc, đường xiên và tính khoảng cách từ một điểm đến một đường thẳng. Dựa vào khái niệm đường vuông góc, đường xiên để nhận biết các loại đường đó. Tính khoảng cách từ một điểm đến đường thẳng chính là tính độ dài đường vuông góc kẻ từ điểm đó đến đường thẳng. Dạng 2: Đưa ra quan hệ giữa đường vuông góc và đường xiên, sử dụng định lý đường vuông góc ngắn hơn đường xiên. PHẦN III. BÀI TẬP TỰ LUYỆN: Bao gồm các bài tập để học sinh tự luyện tập và củng cố kiến thức về quan hệ giữa đường vuông góc và đường xiên. Tài liệu này sẽ giúp học sinh dễ dàng hiểu và áp dụng các kiến thức về đường vuông góc và đường xiên trong môn Toán lớp 7.
Chuyên đề quan hệ giữa góc và cạnh đối diện trong một tam giác lớp 7 môn Toán
Nội dung Chuyên đề quan hệ giữa góc và cạnh đối diện trong một tam giác lớp 7 môn Toán Bản PDF - Nội dung bài viết Chuyên đề về quan hệ giữa góc và cạnh đối diện trong tam giác lớp 7Tóm tắt lí thuyết:Các dạng bài tập:Dạng 1: So sánh góc trong tam giácDạng 2: So sánh cạnh trong tam giácBài tập tự luyện: Chuyên đề về quan hệ giữa góc và cạnh đối diện trong tam giác lớp 7 Để hiểu rõ hơn về mối quan hệ giữa góc và cạnh đối diện trong một tam giác, chúng ta cần nắm vững các điều cơ bản sau đây: Tóm tắt lí thuyết: - Định lí 1: So sánh các cạnh đối diện với các góc trong một tam giác. - Định lí 2: So sánh các góc đối diện với các cạnh trong tam giác. Các dạng bài tập: Dạng 1: So sánh góc trong tam giác - TH1: Nếu các góc cần so sánh nằm trong cùng một tam giác, ta áp dụng định lí 1. - TH2: Nếu các góc cần so sánh khác tam giác, dùng góc trung gian để so sánh. Dạng 2: So sánh cạnh trong tam giác - TH1: Nếu cạnh cần so sánh nằm trong tam giác, ta áp dụng định lí 2. - TH2: Nếu cạnh cần so sánh khác tam giác, dùng góc trung gian để so sánh. Bài tập tự luyện: Để nắm vững kiến thức, hãy tự luyện tập các bài toán liên quan đến quan hệ giữa góc và cạnh đối diện trong tam giác. Hãy áp dụng các định lí và phương pháp đã học để giải quyết các bài tập một cách thành thạo.