Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn HSG Toán năm 2019 2020 cụm trường THPT huyện Việt Yên Bắc Giang

Nội dung Đề chọn HSG Toán năm 2019 2020 cụm trường THPT huyện Việt Yên Bắc Giang Bản PDF Ngày 13 tháng 01 năm 2020, cụm các trường THPT huyện Việt Yên, tỉnh Bắc Giang tổ chức kỳ thi chọn học sinh giỏi cấp huyện môn Toán năm học 2019 – 2020. Đề chọn HSG Toán năm 2019 – 2020 cụm trường THPT huyện Việt Yên – Bắc Giang mã đề 101, đề gồm có 04 trang với 40 câu trắc nghiệm (chiếm 14 điểm) và 03 câu tự luận (chiếm 06 điểm), thời gian học sinh làm bài thi là 120 phút, chưa kể thời gian giám thị coi thi phát đề. Trích dẫn đề chọn HSG Toán năm 2019 – 2020 cụm trường THPT huyện Việt Yên – Bắc Giang : + Một người gửi 8 triệu đồng vào ngân hàng với lãi suất 0,6 % một tháng. Kể từ lần gửi đầu tiên cứ sau hai tháng người đó lại gửi vào ngân hàng với số tiền 8 triệu đồng. Hỏi sau đúng hai năm kể từ lần gửi đầu tiên số tiền người đó thu được cả gốc và lãi là bao nhiêu ? biết ngân hàng tính lãi trên số tiền có thực tế ở trong ngân hàng, trong suốt quá trình gửi người đó không rút ra một đồng nào (kết quả làm tròn đến hàng nghìn). A. 101,876 triệu đồng. B. 103,852 triệu đồng. C. 106,385 triệu đồng. D. 110,686 triệu đồng. + Cho khối chóp S.ABCD có đáy là hình bình hành, điểm M thuộc cạnh SC sao cho SM = kMC. Mặt phẳng (P) qua AM và song song với BD chia khối chóp thành hai khối đa diện (H) và (E), (H) là khối đa diện chứa đỉnh C. Gọi VH, VE lần lượt là thể tích của (H) và (E). Tìm k để VH = 6VE. [ads] + Trong không gian Oxyz, cho tam giác ABC có A(3;1;2), B(-1;5;4) và điểm C thuộc trục hoành. Điểm M(a;b;c) nằm trên cạnh AB sao cho diện tích tam giác MAC bằng 3 lần diện tích tam giác MBC. Mệnh đề nào dưới đây đúng? + Cho hình trụ có tâm của hai đáy là O, O’. Hai điểm A, B lần lượt nằm trên hai đường tròn (O), (O’) sao cho AB = 4a, góc giữa AB và OO’ bằng 30°. Khoảng cách giữa AB và OO’ bằng a√3. Diện tích toàn phần của hình trụ bằng? + Từ các chữ số 1; 2; 3; 4; 5; 6; 7; 9 lập được bao nhiêu số tự nhiên có 5 chữ số khác nhau từng đôi một, trong đó có 3 chữ số lẻ và 2 chữ số chẵn. Tính tổng các số lập được. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 - 2023 sở GDĐT Yên Bái
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi lập đội tuyển dự thi chọn học sinh giỏi Quốc gia THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đạo tạo tỉnh Yên Bái; kỳ thi được diễn ra vào ngày 30/09/2022 (ngày thi thứ nhất) và 01/10/2022 (ngày thi thứ hai). Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 – 2023 sở GD&ĐT Yên Bái : + Cho tam giác ABC nhọn, không cân, có đường cao BE, CF cắt nhau tại H. Đường thẳng qua C song song với AB cắt BE tại M, đường thẳng qua B song song với AC cắt CF tại N. Điểm D là hình chiếu của H trên MN, I là trung điểm của BC. 1) Chứng minh AH, DI, EF đồng quy. 2) Gọi J là trung điểm của AH. Đường thẳng IJ cắt BE, CF lần lượt tại U, V. Đường tròn ngoại tiếp tam giác HUV và đường tròn ngoại tiếp tam giác AEF cắt nhau tại điểm T khác H. Chứng minh ba điểm A, T, I thẳng hàng. + Cho số nguyên dương n và số nguyên tố lẻ p. Biết p là ước của 3^2^n + 1, chứng minh p – 1 chia hết cho 2^(n + 1). + Cho 2n điểm phân biệt trong không gian (với n >= 2) sao cho trong chúng không có ba điểm nào thẳng hàng và không có bốn điểm nào cùng nằm trên một mặt phẳng. Xét n2 + 1 đoạn thẳng bất kì, mỗi đoạn có hai đầu mút là hai trong số 2n điểm trên. Chứng minh rằng có ít nhất một tam giác được tạo thành từ n2 + 1 đoạn thẳng trên.
Đề học sinh giỏi cấp tỉnh Toán THPT năm 2022 - 2023 sở GDĐT Yên Bái
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Yên Bái; kỳ thi được diễn ra vào ngày 29 tháng 09 năm 2022. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THPT năm 2022 – 2023 sở GD&ĐT Yên Bái : + Cho hàm số y = (2x + 3)/(x + 3) có đồ thị (C) và đường thẳng d: y = -2x + m (m là tham số thực). Chứng minh rằng d cắt (C) tại hai điểm A, B phân biệt với mọi tham số thực m. Gọi k1, k2 lần lượt là hệ số góc của tiếp tuyến của (C) tại A và B. Tìm tất cả các giá trị của m để P = (k1)^2022 + (k2)^2022 đạt giá trị nhỏ nhất. + Cho đa giác (H) có 20 đỉnh nội tiếp một đường tròn. Chọn bốn đỉnh tùy ý của (H). Tính xác suất để chọn được bốn đỉnh tạo thành một tứ giác lồi có bốn cạnh đều là đường chéo của (H). + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a. Hai mặt phẳng (SAB) và (SAC) cùng vuông góc với mặt phẳng đáy. Góc giữa SC và mặt phẳng (SAB) bằng 30°. Gọi M, N lần lượt là các điểm thuộc cạnh BC, CD sao cho BM = 2MC và CN = 2ND. 1) Tính thể tích khối chóp S.ABCD. 2) Tính khoảng cách giữa hai đường thẳng DM và SN.
Đề học sinh giỏi Toán 12 lần 1 năm 2022 - 2023 cụm liên trường THPT - Nghệ An
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng học sinh giỏi môn Toán 12 lần 1 năm học 2022 – 2023 cụm thi liên trường THPT trực thuộc sở Giáo dục và Đào tạo tỉnh Nghệ An. Trích dẫn Đề học sinh giỏi Toán 12 lần 1 năm 2022 – 2023 cụm liên trường THPT – Nghệ An : + Trong tiết học môn thể dục, giáo viên cho 20 học sinh đứng thành một vòng tròn để truyền đạt kiến thức, sau đó giáo viên gọi ngẫu nhiên bốn học sinh lên làm mẫu. Tính xác suất để trong bốn học sinh được gọi không có hai học sinh đứng cạnh nhau. + Một người thợ gò hàn làm một cái thùng đựng nước dạng hình hộp chữ nhật có nắp bằng tôn. Biết rằng đường chéo hình hộp bằng 6dm và chỉ được sử dụng vừa đủ 36dm2 tôn. Tính thể tích lớn nhất của cái thùng. + Cho lăng trụ đứng ABC.A’B’C’ có đáy là tam giác cân tại A và BAC = a. Gọi M là trung điểm của AA’, mặt phẳng (C’MB) tạo với đáy (ABC) góc b. Xác định hệ thức giữa a và b để tam giác C’MB là tam giác vuông.
Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 - 2023 sở GDĐT Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn đội tuyển dự thi học sinh giỏi Quốc gia môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Thanh Hóa; kỳ thi được diễn ra trong hai ngày: 27/09/2022 (vòng 1) và 28/09/2022 (vòng 2). Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 – 2023 sở GD&ĐT Thanh Hóa : + Cho dãy số (xn) xác định bởi. Chứng minh rằng dãy số (yn) xác định bởi yn có giới hạn hữu hạn và tìm giới hạn đó. + Cho một nhóm 15 học sinh có chiều cao đôi một khác nhau gồm 5 học sinh nữ có chiều cao tăng dần ký hiệu lần lượt là G1, G2, G3, G4, G5 và 10 học sinh nam. Hỏi có bao nhiêu cách xếp 15 học sinh đó theo một hàng ngang sao cho tính từ trái sang phải thì các học sinh nữ có chiều cao tăng dần, các học sinh nam cũng có chiều cao tăng dần, giữa học sinh G1 và G2 có ít nhất 3 học sinh nam, giữa học sinh G4 và G5 có ít nhất 1 học sinh nam và nhiều nhất 3 học sinh nam. + Cho H là một lục giác đều có cạnh bằng 2022. Tồn tại hay không số nguyên dương n sao cho có một cách phân hoạch H thành n hình tam giác có cạnh không lớn hơn 2022 và tổng n tỉ số giữa độ dài cạnh ngắn nhất với độ dài cạnh dài nhất của mỗi tam giác đó không vượt quá?