Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp phân tích đa thức thành nhân tử

Tài liệu gồm 74 trang, hướng dẫn các phương pháp phân tích đa thức thành nhân tử, giúp học sinh lớp 8 tham khảo khi học chương trình Toán 8 phần Đại số 8. A. MỘT SỐ PHƯƠNG PHÁP PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ I. Các phương pháp phân tích cơ bản 1. Phương pháp đặt nhân tử chung. + Tìm nhân tử chung là những đơn thức, đa thức có mặt trong tất cả các hạng tử. + Phân tích mỗi hạng tử thành tích của nhân tử chung và một nhân tử khác. + Viết nhân tử chung ra ngoài dấu ngoặc, viết các nhân tử còn lại của mỗi hạng tử vào trong dấu ngoặc (kể cả dấu của chúng). 2. Phương pháp dùng hằng đẳng thức. + Dùng các hằng đẳng thức đáng nhớ để phân tích đa thức thành nhân tử. + Cần chú ý đến việc vận dụng hằng đẳng thức. 3. Phương pháp nhóm nhiều hạng tử và phối hợp các phương pháp. + Kết hợp các hạng tử thích hợp thành từng nhóm. + Áp dụng liên tiếp các phương pháp đặt nhân tử chung hoặc dùng hằng đẳng thức. II. Một số phương pháp nâng cao Chúng ta đã biết các phương pháp cơ bản để phân tích một đa thức thành nhân tử là đặt nhân tử chung, dùng hằng đẳng thức, nhóm các hạng tử và phối hợp các phương pháp đó. Tuy nhiên có những đa thức mặc dù rất đơn giản, nếu chỉ biết dùng ba phương pháp đó thôi thì không thể phân tích thành nhân tử được. Do đó trong chuyên đề này chúng ta sẽ xét thêm một số phương pháp khác để phân tích đa thức thành nhân tử. 1. Phương pháp tách hạng tử. 1.1. Đối với đa thức bậc hai f(x) = ax2 + bx + c có nghiệm. 1.2. Đối với đa thức hai biến dạng f(x;y) = ax2 + bxy + cy2. 1.3. Đối với đa thức bậc từ 3 trở lên. 1.4. Đối với đa thức nhiều biến. 2. Phương pháp thêm và bớt cùng một hạng tử. Với một số đa thức không thể sử dụng các phương pháp như đặt nhân tử chung, sử dụng hằng đẳng thức, nhóm hạng tử cũng như phép tách hạng tử để phân tích thành nhân tử. Khi đó ta có thể sử dụng phép thêm bớt cùng một hạng tử với mục đích làm xuất hiện nhân tử chung hoặc xuất hiện các hằng đẳng thức. 2.1. Thêm và bớt cùng một số các hạng tử làm xuất hiện các hằng đẳng thức. 2.2. Thêm và bớt cùng một số hạng tử làm xuất hiện nhân tử chung. 3. Phương pháp đổi biến. Với một số đa thức có bậc cao hoặc có cấu tạo phức tạp mà khi thự hiện theo các phương pháp như trên gây ra nhiều khó khăn. Khi đó thông qua phép đổi biết ta đưa được về đa thức có bậc thấp hơn goặc đơn giản hơn để thuận tiện cho việc phân tích thành nhân tử. Sau khi phân tích thành nhân tử đối với đa thức mới ta thay trở lại biến cũ để được đa thức với biến cũ. 4. Phương pháp hệ số bất định. 5. Phương pháp xét giá trị riêng. Trong phương pháp này, trước hết ta xác định dạng các nhân tử chứa biến của đa thức, rồi gán cho các biến các giá trị cụ thể để xác định các nhân tử còn lại. B. MỘT SỐ BÀI TẬP TỰ LUYỆN C. HƯỚNG DẪN GIẢI

Nguồn: toanmath.com

Đọc Sách

Đề cương ôn tập cuối kì 2 Toán 8 năm 2022 - 2023 trường THCS Ngọc Lâm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 tài liệu đề cương hướng dẫn nội dung ôn tập kiểm tra cuối học kì 2 môn Toán 8 năm học 2022 – 2023 trường THCS Ngọc Lâm, quận Long Biên, thành phố Hà Nội. Phần 1 . Nội dung kiến thức cần ôn tập. 1. Các đơn vị kiến thức đã học từ tuần 19 đến hết tuần 30. 2. Một số câu hỏi trọng tâm. Câu 1. Khái niệm phương trình bậc nhất một ẩn? Hai phương trình tương đương? Câu 2. Nêu các quy tắc biến đổi tương đương phương trình? Câu 3. Nêu khái niệm bất đẳng thức, bất phương trình bậc nhất một ẩn? Mối liên hệ giữa thứ tự và phép tính (phép cộng, phép nhân)? Các quy tắc biến đổi bất phương trình? Câu 4. Phương pháp giải các phương trình bậc nhất một ẩn, phương trình tích, phương trình chứa ẩn ở mẫu, bất phương trình bậc nhất một ẩn, phương trình có chứa dấu giá trị tuyệt đối? Câu 5. Nêu các bước giải bài toán bằng các lập phương trình. Câu 6. Phát biểu, vẽ hình, viết GT-KL định lí Talet, định lí đảo và hệ quả của định lí Talet. Câu 7. Phát biểu, vẽ hình, viết GT–KL tính chất đường phân giác của tam giác. Câu 8. Nêu khái niệm hai tam giác đồng dạng, các trường hợp đồng dạng của tam giác. Câu 9. Khái niệm hình hộp chữ nhật, hình lập phương? Nêu các công thức tính diện tích xung quanh, diện tích toàn phần, thể tích của hình hộp chữ nhật, hình lập phương? Phần 2 . Một số dạng bài tập minh hoạ.
Đề cương học kỳ 2 Toán 8 năm 2022 - 2023 trường THCS Long Toàn - BR VT
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương ôn tập kiểm tra cuối học kỳ 2 môn Toán 8 năm học 2022 – 2023 trường THCS Long Toàn, tỉnh Bà Rịa – Vũng Tàu. I. CÁC KIẾN THỨC TRỌNG TÂM A. ĐẠI SỐ: + Phương trình bậc nhất một ẩn và phương trình đưa được về dạng ax + b = 0. + Phương trình tích A(x).B(x) = 0. + Phương trình chứa ẩn ở mẫu. + Giải bài toán bằng cách lập phương trình. + Bất phương trình bậc nhất một ẩn. + Phương trình có chứa dấu giá trị tuyệt đối. B. HÌNH HỌC: + Định lý Ta-lét. + Hệ quả của định lý Ta-lét. + Tính chất đường phân giác của tam giác. + Các trường hợp đồng dạng của hai tam giác và tính chất của hai tam giác đồng dạng. II. CÁC ĐỀ THAM KHẢO
Đề cương học kì 2 Toán 8 năm 2022 - 2023 trường THCS Nguyễn Du - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương ôn tập cuối học kì 2 môn Toán 8 năm học 2022 – 2023 trường THCS Nguyễn Du, quận Hoàn Kiếm, thành phố Hà Nội. A. LÝ THUYẾT PHẦN ĐẠI SỐ: – Từ câu 1 đến câu 6 trang 32 – 33 – SGK tập 2 – Từ câu 1 đến câu 5 trang 52 – SGK tập 2. PHẦN HÌNH HỌC: – Từ câu 1 đến câu 9 trang 89 – SGK tập 2. – Bảng KT về hình lăng trụ đứng, hình hộp, hình chóp đều trang 126 – SGK tập 2. B. BÀI TẬP THAM KHẢO I. ĐẠI SỐ. Dạng 1: Giải phương trình. Dạng 2: Giải bất phương trình và biểu diễn tập nghiệm trên trục số. Dạng 3: Rút gọn biểu thức và một số bài toán sử dụng kết quả rút gọn. Dạng 4: Giải bài toán bằng cách lập phương trình. II. PHẦN HÌNH HỌC.
Đề cương HK2 Toán 8 năm 2022 - 2023 trường THCS Hoàng Hoa Thám - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương ôn tập cuối học kì 2 môn Toán 8 năm học 2022 – 2023 trường THCS Hoàng Hoa Thám, thành phố Hà Nội. A. KIẾN THỨC TRỌNG TÂM 1. Đại số. – Biến đổi đơn giản biểu thức. – Giải phương trình và bất phương trình. – Giải bài toán bằng cách lập phương trình. 2. Hình học. – Công thức tính diện tích đa giác. – Định lí Ta-lét và hệ quả của định lí Ta-let. Tính chất đường phân giác của tam giác. – Các trường hợp đồng dạng của tam giác, tam giác vuông. – Hình hộp chữ nhật. B. BÀI TẬP THAM KHẢO 1. Đại số. + Dạng 1: Rút gọn biểu thức. + Dạng 2: Giải phương trình và bất phương trình. + Dạng 3: Giải bài toán bằng cách lập phương trình. 2. Hình học.