Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Việt Trì Phú Thọ

Nội dung Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Việt Trì Phú Thọ Bản PDF Đề học sinh giỏi lớp 8 môn Toán năm 2022-2023 phòng GD ĐT Việt Trì Phú Thọ

Chào mừng đến với bài thi học sinh giỏi môn Toán lớp 8 cấp thành phố năm học 2022-2023 do Phòng Giáo dục và Đào tạo thành phố Việt Trì, tỉnh Phú Thọ tổ chức. Đề thi gồm hai phần: phần trắc nghiệm khách quan với 16 câu hỏi trị giá 8 điểm và phần tự luận với 4 câu hỏi trị giá 12 điểm. Thời gian làm bài là 150 phút (không tính thời gian giao đề). Đề thi bao gồm đáp án và lời giải chi tiết để các em học sinh tham khảo sau khi kết thúc bài thi.

Ví dụ về một trong số câu hỏi trong đề thi:
1. Lớp 8D có 34 em đi học phụ đạo ba môn: Toán, Ngữ văn, tiếng Anh. Có 12 em đi học Toán, số em đi học tiếng Anh nhiều gấp 3 lần số em đi học Ngữ văn. Trong đó có 5 em vừa đi học tiếng Anh vừa đi học Toán, 4 em vừa đi học tiếng Anh vừa đi học Ngữ văn, 3 em vừa đi học Toán vừa đi học Ngữ văn, 2 em đi học cả ba môn nói trên. Hỏi số em đi học tiếng Anh?

Hãy tham gia và thử sức với những câu hỏi thú vị và thách thức trong đề thi học sinh giỏi môn Toán lớp 8. Chúc các em học sinh có kết quả tốt và thành công trên con đường học tập.

Nguồn: sytu.vn

Đọc Sách

Đề giao lưu HSG Toán 8 năm 2014 - 2015 phòng GDĐT Vĩnh Lộc - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu HSG Toán 8 năm 2014 – 2015 phòng GD&ĐT Vĩnh Lộc – Thanh Hóa; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề giao lưu HSG Toán 8 năm 2014 – 2015 phòng GD&ĐT Vĩnh Lộc – Thanh Hóa : + Cho tam giác nhọn ABC (AB < AC) có đường cao AH sao cho AH = HC. Trên AH lấy một điểm I sao cho HI = BH. Gọi P và Q là trung điểm của BI và AC. Gọi N và M là hình chiếu của H trên AB và IC ; K là giao điểm của đường thẳng CI với AB; D là giao điểm của đường thẳng BI với AC. a) Chứng minh I là trực tâm của tam giác ABC. b) Tứ giác HNKM là hình vuông. c) Chứng minh bốn điểm N, P, M, Q thẳng hàng. + Cho x là số nguyên. Chứng minh rằng biểu thức M = (x + 1)(x + 2)(x + 3)(x + 4) + 1 là bình phương của một số nguyên. + Cho x, y, z là các số nguyên thỏa mãn: x + y + z chia hết cho 6. Chứng minh M = (x + y)(x + z)(y + z) – 2xyz chia hết cho 6.
Đề học sinh giỏi huyện Toán 8 năm 2014 - 2015 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 8 năm 2014 – 2015 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 8 năm 2014 – 2015 phòng GD&ĐT Nho Quan – Ninh Bình : + Cho abc là các số hữu tỷ thỏa mãn điều kiện ab bc ca 1. Chứng minh rằng biểu thúc 222 Qa b c là bình phương của một số hữu tỷ. + Cho các số nguyên abc thoả mãn 333 210 ab bc ca. Tính giá trị của biểu thức B ab bc ca. + Cho tam giác ABC, M là một điểm thuộc cạnh BC M kh B M kh C. Qua M kẻ các đường thẳng song song với AC AB, chúng cắt AB AC lần lượt tại D và E. a) Chứng minh tứ giác ADME là hình bình hành. Xác định vị trí của điểm M trên cạnh BC để hình bình hành ADME là hình thoi. b) Chứng minh rằng BD EC DM ME. c) Cho 2 2 9 16 BDM CME S cm S cm. Tính ABC S (ký hiệu S là diện tích tam giác). d) Chứng minh rằng AM BC AC BM AB CM.
Đề học sinh giỏi huyện Toán 8 năm 2013 - 2014 phòng GDĐT Yên Phong - Bắc Ninh
Đề học sinh giỏi huyện Toán 8 năm 2013 – 2014 phòng GD&ĐT Yên Phong – Bắc Ninh có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 14 tháng 04 năm 2014. Trích dẫn đề học sinh giỏi huyện Toán 8 năm 2013 – 2014 phòng GD&ĐT Yên Phong – Bắc Ninh : + Cho hình thang ABCD vuông tại A và D. Biết CD = 2AB = 2AD và BC = a2. Gọi E là trung điểm của CD. a. Tứ giác ABED là hình gì? Tại sao? b. Tính diện tích hình thang ABCD theo a. c. Gọi I là trung điểm của BC, H là chân đường vuông góc kẻ từ D xuống AC. Tính góc HDI? + Cho biểu thức. a. Rút gọn biểu thức A. b. Tìm các giá trị nguyên của x để biểu thức A nhận giá trị nguyên. c. Tìm x để A. + Phần dành cho thí sinh trường đạị trà: Cho a, b, c là 3 cạnh của tam giác, p là nửa chu vi. Phần dành cho thí sinh trường THCS Yên Phong: Cho a, b, c, d là các số dương. Chứng minh rằng.
Đề học sinh giỏi huyện Toán 8 năm 2013 - 2014 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 8 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 8 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình : + Chứng minh rằng số có dạng 43 2 An n n n 6 11 6 chia hết cho 24 với mọi số tự nhiên n. + Đa thức f(x) khi chia cho x 1 dư 4, khi chia cho 2x 1 dư 2 3 x. Tìm phần dư khi chia f(x) cho 2 1 1 x x. + Cho hình vuông ABCD cạnh a, lấy điểm M bất kỳ trên cạnh BC (M khác B và C). Qua B kẻ đường thẳng vuông góc với đường thẳng DM tại H, kéo dài BH cắt đường thẳng DC tại K. 1. Chứng minh KM vuông góc với DB. 2. Chứng minh rằng: KC.KD = KH.KB. 3. Ký hiệu ABM DCM S S lần lượt là diện tích các tam giác ABM và DCM. a) Chứng minh tổng ABM DCM S S không đổi. b) Xác định vị trí của điểm M trên cạnh BC để 2 2 ABM DCM S S đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó theo a.