Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử môn Toán 2018 THPT Quốc gia đợt 2 - HK1 trường chuyên Hùng Vương - Bình Dương

Đề thi thử môn Toán 2018 THPT Quốc gia đợt 2 – HK1 trường chuyên Hùng Vương – Bình Dương gồm 50 câu hỏi trác nghiệm, thời gian làm bài 90 phút, nội dung đề thi có cả nội dung chương trình Toán 11 theo kế hoạch thi THPT Quốc gia năm nay, đề thi có đáp án . Trích dẫn đề thi : + Cường độ của ánh sáng I khi đi qua môi trường khác với không khí, chẳng hạn như sương mù hay nước … sẽ giảm dần tùy theo độ dày của môi trường và một hằng số μ gọi là khả năng hấp thu ánh sáng tùy theo bản chất môi trường mà ánh sáng truyền đi và được tính theo công thức I = I0.e^(-μx) với x là độ dày của môi trường đó và tính bằng mét, I0 là cường độ ánh sáng tại thời điểm trên mặt nước. Biết rằng nước hồ trong suốt có μ = 1,4. Hỏi cường độ ánh sáng giảm đi bao nhiêu lần khi truyền trong hồ đó từ độ sâu 3m xuống đến độ sâu 30m ( chọn giá trị gần đúng với đáp số nhất). A. e^30 lần B. 2,6081.10^16 lần C. e^27 lần D. 2,6081.10^(-16) lần [ads] + Hai bạn Hùng và Vương cùng tham gia một kỳ thi thử trong đó có hai môn thi trắc nghiệm là Toán và Tiếng Anh. Đề thi của mỗi môn gồm 6 mã đề khác nhau và các môn khác nhau thì mã đề cũng khác nhau. Đề thi được sắp xếp và phát cho học sinh một cách ngẫu nhiên. Tính xác suất để trong hai môn Toán và Tiếng Anh thì hai bạn Hùng và Vương có chung đúng một mã đề thi. A. 5/36   B. 5/9 C. 5/72   D. 5/18 + Tìm khẳng định sai trong các khẳng định sau đây: A. Nếu hai mặt phẳng song song cùng cắt mặt phẳng thứ ba thì hai giao tuyến tạo thành song song với nhau. B. Ba mặt phẳng đôi một song song chắn trên hai đường thẳng chéo nhau những đoạn thẳng tương ứng tỉ lệ. C. Nếu mặt phẳng (P) song song với mặt phẳng (Q) thì mọi đường thẳng nằm trên mặt phẳng (P) đều song song với mặt phẳng (Q). D. Nếu mặt phẳng (P) có chứa hai đường thẳng phân biệt và hai đường thẳng đó cùng song song song với mặt phẳng (Q) thì mặt phẳng (P) song song với mặt phẳng (Q).

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra Toán 12 năm 2022 trường Nguyễn Khuyến Lê Thánh Tông - TP HCM
Nhằm hướng đến kỳ thi chính thức tốt nghiệp THPT 2022 môn Toán, giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra định kì môn Toán 12 năm học 2021 – 2022 trường THCS – THPT Nguyễn Khuyến & TH – THCS – THPT Lê Thánh Tông, thành phố Hồ Chí Minh; kỳ thi được diễn ra vào ngày 19 tháng 06 năm 2022. Trích dẫn đề kiểm tra Toán 12 năm 2022 trường Nguyễn Khuyến & Lê Thánh Tông – TP HCM : + Cho hàm số f(x) = x4 + bx2 + c (b, c ∈ R) có 3 điểm cực trị x1, x2, x3. Đồ thị hàm số g(x) = mx2 + nx + p (m, n, p ∈ R) đi qua 3 điểm cực trị của đồ thị hàm số y = f(x). Biết diện tích hình phẳng giới hạn bởi hai đồ thị hàm số y = f(x) và y = g(x) bằng 4 15. Giá trị của T = b + c − (m + n + p) là? + Trong không gian hệ tọa độ Oxyz, cho mặt cầu (S) : (x − 1)2 + (y − 1)2 + z2 = a2 và họ mặt phẳng (Pm) : (m2 + 1)x + 2my + 2√2z = 0. Có bao nhiêu giá trị a để khi m thay đổi luôn có duy nhất một mặt cầu cố định có tâm nằm trên mặt cầu (S) và tiếp xúc với mặt phẳng (Pm)? + Cho các số phức z và w thỏa mãn |z| = |w| = 2 và zw + wz + 8 = 0. Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của P = z − iw + 3i. Khi đó M − 5m có giá trị bằng bao nhiêu?
Đề khảo sát chất lượng Toán 12 đợt 2 cuối năm 2021 - 2022 sở GDĐT Nam Định
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán 12 THPT đợt 2 cuối năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Nam Định, nhằm giúp các em rèn luyện để chuẩn bị cho kì thi tốt nghiệp Trung học Phổ thông môn Toán năm 2022; kỳ thi được diễn ra vào thứ Bảy ngày 18 tháng 06 năm 2022; đề thi có đáp án mã đề Mã đề 911 Mã đề 913 Mã đề 915 Mã đề 917. Trích dẫn đề khảo sát chất lượng Toán 12 đợt 2 cuối năm 2021 – 2022 sở GD&ĐT Nam Định : + Cho hình chóp S.ABCD có đáy là hình thang ABCD vuông tại A và D; AB = 2AD = 2CD; SA vuông góc với đáy; góc giữa SC và đáy bằng 60°. Biết khoảng cách từ B đến (SCD) bằng a42/7, tính thể tích của khối chóp S.ACD. + Trong không gian Oxyz, cho đường thẳng d, mặt phẳng (P): x + y – 2z + 5 = 0 và điểm A(1;-1;2). Đường thẳng A đi qua A cắt đường thẳng d và mặt phẳng (P) lần lượt tại M, N sao cho AM = 2AN, biết rằng A có một vectơ chỉ phương u = (a;b;-1). Khi đó a – b bằng? + Trong không gian Oxyz, cho mặt cầu (S): x2 + (y – 1)2 + (z + 5)2 = 36 và bốn điểm A(1;2;0), B(3;-1;2), C(1;2;2), D(3;-1;1). Gọi M(a;b;c) là điểm nằm trên mặt cầu (S) sao cho biểu thức T = MA2 + 2MB2 – MC2 – 4MD đạt giá trị nhỏ nhất. Tính a + b + c.
Đề khảo sát chất lượng lớp 12 môn Toán năm 2022 sở GDĐT Cần Thơ
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng học sinh lớp 12 môn Toán năm 2022 sở Giáo dục và Đào tạo thành phố Cần Thơ (mã đề 102); nhằm chuẩn bị cho kỳ thi tốt nghiệp THPT môn Toán năm học 2021 – 2022. Trích dẫn đề khảo sát chất lượng lớp 12 môn Toán năm 2022 sở GD&ĐT Cần Thơ : + Cho H là hình phẳng giới hạn bởi đồ thị hàm số 2 y x x4 4 trục tung và trục hoành. Đường thẳng d đi qua điểm A 0 4 và có hệ số góc k k chia hình H thành hai phần có diện tích bằng nhau. Giá trị của k bằng? + Trong không gian Oxyz cho mặt cầu 2 2 2 S x y z 1 1 4 và hai điểm A 1 2 4 B 0 0 1. Mặt phẳng P ax by cz 3 0 a b c đi qua A, B và cắt S theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Giá trị của a b c bằng? + Một hộp chứa 9 quả cầu gồm 4 quả màu xanh, 3 quả màu đỏ và 2 quả màu vàng. Lấy ngẫu nhiên 3 quả cầu từ hộp đó. Xác suất để trong 3 quả cầu lấy được có ít nhất 1 quả màu đỏ bằng?
Bộ đề tham khảo thi tốt nghiệp THPT 2022 môn Toán sở GDĐT Hà Tĩnh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 bộ đề thi tham khảo kỳ thi tốt nghiệp THPT năm 2022 môn Toán sở Giáo dục và Đào tạo tỉnh Hà Tĩnh; các đề có đáp án và lời giải chi tiết. Trích dẫn bộ đề tham khảo thi tốt nghiệp THPT 2022 môn Toán sở GD&ĐT Hà Tĩnh : + Cho hình trụ tròn xoay có hai đáy là hai hình tròn (O;3) và (O’;3). Biết rằng tồn tại dây cung AB thuộc đường tròn O sao cho O AB là tam giác đều và mặt phẳng (O AB) hợp với đáy chứa đường tròn (O) một góc 60. Tính diện tích xung quanh Sxq của hình nón có đỉnh O đáy là hình tròn (O;3). + Trong không gian với hệ tọa độ Oxyz cho mặt cầu 2 2 2 S x y z 3 8 và hai điểm A B 4 4 3 1 1 1. Gọi C1 là tập hợp các điểm M S sao cho MA MB 2 đạt giá trị nhỏ nhất. Biết rằng C1 là một đường tròn có bán kính 1 R. Tính 1 R. + Trên tập hợp số phức, xét phương trình 2 2 z m z m 2 2 1 4 0 (m là tham số thực). Có tất cả bao nhiêu giá trị của tham số m để phương trình có nghiệm 0 z thỏa mãn 0 z 1?