Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán năm 2021 2022 sở GD ĐT Thừa Thiên Huế

Nội dung Đề tuyển sinh môn Toán năm 2021 2022 sở GD ĐT Thừa Thiên Huế Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2021-2022 sở GD&ĐT Thừa Thiên Huế Đề tuyển sinh môn Toán năm 2021-2022 sở GD&ĐT Thừa Thiên Huế Ngày 5 tháng 6 năm 2021, sở Giáo dục và Đào tạo tỉnh Thừa Thiên Huế đã tổ chức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán cho năm học 2021-2022. Đề tuyển sinh lớp 10 môn Toán của sở GD&ĐT Thừa Thiên Huế bao gồm 1 trang với 6 bài toán dạng tự luận, thời gian làm bài 120 phút. Đề thi đi kèm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn một trong các bài toán trong đề tuyển sinh lớp 10 môn Toán năm 2021-2022 sở GD&ĐT Thừa Thiên Huế: 1. Công ty A đã lên kế hoạch sản xuất 20000 tấm chắn bảo hộ để tặng cho các chốt chống dịch. Nhưng do cải tiến quy trình làm việc và tính khẩn trương, công ty A đã làm được nhiều hơn 300 tấm mỗi ngày so với kế hoạch ban đầu. Vì vậy, họ đã hoàn thành kế hoạch sớm hơn 1 ngày và làm được nhiều hơn 700 tấm so với kế hoạch ban đầu. Nếu số tấm làm ra mỗi ngày là bằng nhau và là số nguyên, hỏi theo kế hoạch ban đầu, mỗi ngày công ty A cần làm bao nhiêu tấm chắn bảo hộ? 2. Trong bài toán này, sinh viên cần chứng minh các phần như tứ giác nội tiếp, tam giác đồng dạng và tính chất của các hình học. 3. Bài toán về thể tích của một khúc gỗ và phần còn lại sau khi bỏ một hình nón bên trong. Sinh viên cần tính toán và xác định thể tích còn lại của khúc gỗ sau khi loại bỏ hình nón. Qua các bài toán trên, thí sinh sẽ phải thể hiện khả năng tư duy logic, tính toán và giải quyết vấn đề một cách logic và có chiều sâu.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Hưng Yên
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Hưng Yên Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Hưng Yên Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Hưng Yên Xin chào quý thầy cô và các em học sinh! Hôm nay, Sytu xin giới thiệu đến bạn đề chính thức cho kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023 – 2024 của sở Giáo dục và Đào tạo tỉnh Hưng Yên. Đề thi này dành cho các thí sinh dự thi vào các lớp chuyên Toán và chuyên Tin học. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Hưng Yên: + Bài toán 1: Tìm các giá trị của tham số m để đường thẳng (d): y = (m + 2)x – m – 8 cắt parabol (P): y = x^2 tại hai điểm phân biệt nằm bên phải trục tung và có hoành độ x1, x2 thỏa mãn x1^3 – x2 = 0. + Bài toán 2: Chứng minh rằng bốn điểm O, M, H, I cùng thuộc một đường tròn. Xác định vị trí của điểm M để đoạn thẳng MN có độ dài nhỏ nhất, trong tam giác ABC đều nội tiếp đường tròn (O;R), H là trung điểm của cạnh BC, M thuộc đoạn BH, N thuộc đoạn CA sao cho CN = BM, I là trung điểm của đoạn MN. + Bài toán 3: Một bình thủy tinh hình trụ cao 30cm chứa nước, diện tích đáy bình bằng 1/6 diện tích xung quanh, mặt nước cách đáy bình là 18cm. Cần đổ bao nhiêu lít nước nữa để bình vừa đầy? (Bỏ qua bề dày của bình, cho pi = 3,14 và kết quả làm tròn đến chữ số thập phân thứ nhất). Với những bài toán thú vị và bổ ích như vậy, chúng ta hãy cùng nghiên cứu và giải quyết để chuẩn bị cho kỳ thi tuyển sinh sắp tới nhé! Chúc mọi người thành công!
Đề tuyển sinh môn Toán năm 2023 2024 sở GD ĐT Ninh Thuận
Nội dung Đề tuyển sinh môn Toán năm 2023 2024 sở GD ĐT Ninh Thuận Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán 2023-2024 sở GD&ĐT Ninh Thuận Đề tuyển sinh môn Toán 2023-2024 sở GD&ĐT Ninh Thuận Chào quý thầy cô giáo và các em học sinh, SYTU xin giới thiệu đến mọi người đề tuyển sinh chính thức vào lớp 10 THPT môn Toán năm học 2023-2024 của sở Giáo dục và Đào tạo tỉnh Ninh Thuận, được tổ chức vào ngày 3 tháng 6 năm 2023. Trích dẫn một số câu hỏi từ đề tuyển sinh: 1. Cho Parabol (P): y = -x^2 và đường thẳng (d): y = x - 2. Hãy vẽ đồ thị của (P) và (d) trên hệ trục tọa độ và tìm tọa độ giao điểm của chúng. 2. Gia đình An có kế hoạch đi du lịch Nha Trang và Huế trong 7 ngày. Chi phí trung bình mỗi ngày tại Nha Trang là 2 triệu đồng, tại Huế là 3 triệu đồng. Xác định số ngày nghỉ ở mỗi địa điểm nếu tổng chi phí chuyến đi là 18 triệu đồng. 3. Đường tròn (O) có tâm O và bán kính R, điểm A nằm ngoài đường tròn. Kẻ các tiếp tuyến từ A đến đường tròn tiếp xúc tại B, C. Chứng minh tứ giác MIBH nội tiếp, tính diện tích tứ giác ABOC khi AB = 2R, và chứng minh MI.MK = MH^2. Hy vọng những câu hỏi này sẽ giúp các em ôn tập hiệu quả và tự tin bước vào kỳ thi tuyển sinh sắp tới. Chúc quý thầy cô và các em thành công!
Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Hải Dương
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Hải Dương Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2023-2024 sở GD&ĐT Hải Dương Đề tuyển sinh môn Toán (chuyên) năm 2023-2024 sở GD&ĐT Hải Dương Bạn đang chuẩn bị tham gia kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán (chuyên) năm học 2023-2024 của sở Giáo dục và Đào tạo tỉnh Hải Dương? Hãy xem qua các câu hỏi dưới đây để chuẩn bị tốt nhất cho kỳ thi của mình. 1. Tìm tất cả các số nguyên tố p lẻ sao cho 2p4 - p2 + 16 là số chính phương. 2. Tìm nghiệm nguyên của phương trình 6x2 + 7xy + 2y2 + x + y - 2 = 0. 3. Cho tam giác đều ABC nội tiếp đường tròn (O), điểm E thuộc cung nhỏ AB của đường tròn (O) (E khác A, E khác B). Đường thẳng AE cắt các tiếp tuyến tại B, C của đường tròn (O) lần lượt tại M, N. a) Chứng minh rằng MB.NC = AB2. b) Gọi F là giao điểm của MC và BN, H là trung điểm BC. Chứng minh rằng ba điểm E, F, H thẳng hàng. Hãy học kỹ và rèn luyện tư duy toán học để chuẩn bị tốt nhất cho kỳ thi sắp tới. Chúc bạn thành công!
Đề tuyển sinh môn Toán (chung) năm 2023 trường THPT chuyên KHTN Hà Nội
Nội dung Đề tuyển sinh môn Toán (chung) năm 2023 trường THPT chuyên KHTN Hà Nội Bản PDF - Nội dung bài viết Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 trường THPT chuyên KHTN Hà Nội Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 trường THPT chuyên KHTN Hà Nội Sytu hân hạnh giới thiệu đến quý thầy cô và các em học sinh Đề tuyển sinh chính thức cho kỳ thi vào lớp 10 môn Toán (chung) năm 2023 của trường THPT chuyên Khoa học Tự nhiên, Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội. Đề thi bao gồm đáp án và lời giải chi tiết, được thực hiện bởi CLB Toán A1 gồm Nguyễn Nhất Huy, Trần Nguyễn Đức Nhật, Phan Anh Quân và Trịnh Huy Vũ. Một số câu hỏi trích dẫn từ Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 trường THPT chuyên KHTN Hà Nội: Chứng minh rằng nếu 3n3 - 1011 chia hết cho 1008, thì n - 1 cũng chia hết cho 48. Chứng minh rằng trong hai đường tròn cắt nhau tại A và B, và một điểm P trên đường tròn thứ nhất, tam giác OBP và O'B'C đồng dạng. Chứng minh rằng tổng của các góc QBC và ABP bằng 90 độ khi hai đường thẳng OP và O'C giao nhau tại điểm Q. Chứng minh rằng trung điểm của đoạn thẳng DQ luôn nằm trên một đường tròn cố định khi điểm P thay đổi. Chứng minh rằng tập hợp A gồm 30 số tự nhiên thỏa mãn điều kiện đặc biệt được mô tả có tối đa 10 phần tử. Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 trường THPT chuyên KHTN Hà Nội sẽ là cơ hội tuyệt vời để các em học sinh thử thách bản thân và chuẩn bị cho hành trình học tập mới. Chúc các em đạt kết quả cao trong kỳ thi sắp tới!