Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển tập đề thi vào môn Toán chuyên và không chuyên

Nội dung Tuyển tập đề thi vào môn Toán chuyên và không chuyên Bản PDF - Nội dung bài viết Tuyển tập đề thi vào môn Toán chuyên và không chuyên Tuyển tập đề thi vào môn Toán chuyên và không chuyên Bộ tài liệu này bao gồm tổng cộng 328 trang, chứa đựng nhiều đề thi vào lớp 10 môn Toán chuyên và không chuyên. Được biên soạn nhằm giúp học sinh lớp 9 rèn luyện và chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán sắp tới. Trong tài liệu này, học sinh sẽ được tiếp cận với một loạt các đề thi tuyển sinh vào lớp 10 từ các tỉnh thành khác nhau trên cả nước. Từ các đề thi của An Giang, Bắc Giang, Bắc Kạn, cho đến các đề thi của Bình Dương, Cần Thơ, Đà Nẵng và nhiều địa phương khác. Với sự đa dạng về nội dung và cấu trúc, tuyển tập này sẽ giúp học sinh nắm vững kiến thức, rèn luyện kỹ năng giải các dạng bài tập phong phú, từ đó nâng cao khả năng làm bài và tự tin hơn khi bước vào kỳ thi quan trọng. Đây chính là tài liệu học tập hữu ích, giúp học sinh tự học hiệu quả và nắm vững kiến thức Toán cần thiết để vượt qua thử thách trong kỳ thi tuyển sinh sắp tới. Một công cụ không thể thiếu cho sự chuẩn bị hoàn hảo của các em học sinh!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh vào môn Toán năm 2021 2022 sở GD ĐT Cần Thơ
Nội dung Đề tuyển sinh vào môn Toán năm 2021 2022 sở GD ĐT Cần Thơ Bản PDF - Nội dung bài viết Đề tuyển sinh vào môn Toán năm 2021-2022 sở GD&ĐT Cần Thơ Đề tuyển sinh vào môn Toán năm 2021-2022 sở GD&ĐT Cần Thơ Chào đón quý thầy cô giáo và các em học sinh! Để chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2021-2022, Sytu xin giới thiệu đến quý vị đề thi được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận. Đề thi bao gồm 20 câu trắc nghiệm và 4 câu tự luận, tổng cộng 10 điểm. Thời gian làm bài là 120 phút, và kỳ thi sẽ diễn ra vào ngày 05 tháng 06 năm 2021. Trích dẫn một số câu hỏi từ đề tuyển sinh: 1. Tìm tất cả các giá trị của tham số m sao cho phương trình 2x^2 + mx + 1 = 0 có hai nghiệm phân biệt x1, x2 thỏa mãn x1^2 + x2^2 + x1 + x2 = 1. 2. Số lượng học sinh tham gia câu lạc bộ Toán học và Sáng tạo khoa học trong hai học kỳ khác nhau, biết rằng tổng số học sinh tham gia cả hai câu lạc bộ không đổi. Hỏi số lượng học sinh của mỗi câu lạc bộ ở học kỳ 2 là bao nhiêu? 3. Xác định các tính chất của các tứ giác và tam giác trong một hệ thống đường tròn nội tiếp để chứng minh một số quy luật và tính chất của hình học. Hãy cùng chuẩn bị tốt cho kỳ thi tuyển sinh và thử sức với đề thi môn Toán năm 2021-2022. Chúc các em học sinh thành công và giải đề thi một cách xuất sắc!
Đề tuyển sinh vào môn Toán năm 2021 2022 sở GD ĐT Đắk Lắk
Nội dung Đề tuyển sinh vào môn Toán năm 2021 2022 sở GD ĐT Đắk Lắk Bản PDF - Nội dung bài viết Đề tuyển sinh vào môn Toán năm 2021-2022 sở GD ĐT Đắk Lắk Đề tuyển sinh vào môn Toán năm 2021-2022 sở GD ĐT Đắk Lắk Đề tuyển sinh vào lớp 10 môn Toán năm học 2021 - 2022 của sở GD&ĐT Đắk Lắk được Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh. Đề thi bao gồm đáp án và lời giải chi tiết do thầy giáo Nguyễn Dương Hải - giáo viên Toán trường THCS Nguyễn Chí Thanh, Buôn Ma Thuột, Đắk Lắk trình bày. Một trong những câu hỏi trong đề tuyển sinh là: Trên nửa đường tròn O đường kính AB với AB = 2022, lấy điểm C (C khác A và B), từ C kẻ CH vuông góc với AB (H thuộc AB). Gọi D là điểm bất kỳ trên đoạn CH (D khác C và H), đường thẳng AD cắt nửa đường tròn tại điểm thứ hai là E. Hãy thực hiện các yêu cầu sau: 1) Chứng minh tứ giác BHDE là tứ giác nội tiếp. 2) Chứng minh AD*EC = CD*AC. 3) Chứng minh 2*AD*AE = BH*BA = 2022. 4) Xác định vị trí của điểm C sao cho chu vi tam giác COH đạt giá trị lớn nhất khi điểm C di chuyển trên nửa đường tròn (C khác A, B và điểm chính giữa cung AB). Ngoài ra, đề cũng đưa ra các bài toán khác trong mặt phẳng tọa độ Oxy và Parabol như: phương trình đường thẳng đi qua điểm A(1,2) và song song với đường thẳng y = x/2 - 1, bài toán về Parabol 2y = x^2 và đường thẳng d y = mx + m^2 - 1/3. Hãy tìm giá trị nhỏ nhất của M(x1, x2) khi giao điểm của đường thẳng d và Parabol P là (x1, x2).
Đề tuyển sinh vào môn Toán (chuyên) năm 2021 2022 sở GD ĐT Đắk Lắk
Nội dung Đề tuyển sinh vào môn Toán (chuyên) năm 2021 2022 sở GD ĐT Đắk Lắk Bản PDF - Nội dung bài viết Chào đón quý thầy cô và các em học sinh đến với đề tuyển sinh môn Toán (chuyên) năm 2021-2022 sở GD&ĐT Đắk Lắk Chào đón quý thầy cô và các em học sinh đến với đề tuyển sinh môn Toán (chuyên) năm 2021-2022 sở GD&ĐT Đắk Lắk Chúng tôi xin giới thiệu đến các bạn đề tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2021-2022 của sở GD&ĐT Đắk Lắk. Đề thi này bao gồm các câu hỏi, đáp án và lời giải chi tiết để giúp các em ôn tập hiệu quả. Ví dụ về một phần trong đề tuyển sinh: "Cho phương trình...". Trong đây, bạn sẽ được đặt ra những câu hỏi liên quan đến phương trình đó và cùng khám phá cách giải quyết chúng trong phần lời giải chi tiết. Chúng tôi hy vọng đề tuyển sinh này sẽ giúp các em học sinh rèn luyện kiến thức, chuẩn bị tốt nhất cho kỳ thi sắp tới. Hãy cùng Sytu trải nghiệm và khám phá thêm nhiều điều thú vị trong đề thi môn Toán (chuyên) của chúng tôi!
Đề tuyển sinh môn Toán (chuyên Tin) năm 2021 2022 sở GD ĐT Hà Nội
Nội dung Đề tuyển sinh môn Toán (chuyên Tin) năm 2021 2022 sở GD ĐT Hà Nội Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chuyên Tin) năm 2021-2022 của sở GD ĐT Hà Nội Đề thi tuyển sinh môn Toán (chuyên Tin) năm 2021-2022 của sở GD ĐT Hà Nội Ngày 14 tháng 06 năm 2021, Sở Giáo dục và Đào tạo thành phố Hà Nội đã tổ chức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên Tin) cho năm học 2021-2022. Đề thi này bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút. Đề thi cung cấp đáp án và lời giải chi tiết do các thành viên của CLB Toán Lim: Nguyễn Khang, Nguyễn Văn Hoàng và Đoàn Phương Khang thực hiện. Cụ thể, trong đề thi có các câu hỏi như sau: Trò chơi với việc lấy kẹo giữa hai bạn An và Bình. Chứng minh tính chất của tam giác MBI. Chứng minh tính chất của điểm P, M và D. Chứng minh tính chất của đường thẳng HD và AM. Chứng minh tính chất của số nguyên n2 + 3n + 16 không chia hết cho 25. Đề thi này là cơ hội để các thí sinh thể hiện kiến thức và kỹ năng giải quyết vấn đề trong môn Toán (chuyên Tin). Hy vọng các thí sinh sẽ tự tin và giải đề thi một cách thành công.