Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi vào 10 môn Toán (chuyên Toán) năm 2021 - 2022 trường chuyên Lam Sơn - Thanh Hóa

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi vào 10 môn Toán (chuyên Toán) năm 2021 – 2022 trường chuyên Lam Sơn – Thanh Hóa; đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 05 tháng 06 năm 2021. Trích dẫn đề thi vào 10 môn Toán (chuyên Toán) năm 2021 – 2022 trường chuyên Lam Sơn – Thanh Hóa : + Cho bảng kẻ ô vuông kích thước 8 8 gồm có 64 ô vuông con (như hình vẽ bên). Người ta đặt 33 quân cờ vào các ô vuông con của bảng sao cho mỗi ô vuông con có không quá một quân cờ. Hai quân cờ được gọi là “chiếu nhau” nếu chúng nằm cùng một hàng hoặc nằm cùng một cột. Chứng minh rằng với mỗi cách đặt luôn tồn tại ít nhất 5 quân cờ đôi một không chiếu nhau. + Cho hai đường tròn O và O cắt nhau tại hai điểm A và B. Tiếp tuyến tại A của đường tròn tâm O cắt đường tròn tâm O tại P P A. Tiếp tuyến tại A của đường tròn tâm O cắt đường tròn tâm O tại Q Q A. Gọi I là điểm sao cho tứ giác AOIO là hình bình hành và D đối xứng với A qua B. a) Chứng minh rằng I là tâm đường tròn ngoại tiếp tam giác A P Q. Từ đó suy ra tứ giác A D P Q nội tiếp. b) Gọi M là trung điểm của đoạn PQ. Chứng minh ADP QDM. c) Giả sử hai đường thẳng IB và PQ cắt nhau tại S. Gọi K là giao điểm của ADvà PQ. Chứng minh: 2 1 1 SK SP SQ. + Cho các số hữu tỉ a b c đôi một phân biệt. Đặt 2 2 2 1 1 1 B a b b c c a. Chứng minh rằng B là số hữu tỉ.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 - 2022 sở GDĐT Lào Cai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 – 2022 sở GD&ĐT Lào Cai; đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 03 tháng 06 năm 2021. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 – 2022 sở GD&ĐT Lào Cai : + Một người dự định đi xe đạp từ A đến B cách nhau 40km trong một thời gian nhất định. Sau khi đi được 20km người đó đã dừng lại nghỉ 20 phút. Do đó để đến B đúng thời gian dự định người đó phải tăng vận tốc thêm 3km/h. Tính vận tốc dự định của người đó. + Cho tam giác nhọn ABC không cân (AB < AC) có đường tròn ngoại tiếp (O; R) và đường tròn nội tiếp (I; r). Đường tròn (I; r) tiếp xúc với các cạnh BC CA AB lần lượt tại D, E, F. Kéo dài AI cắt BC tại M và cắt đường tròn (O;R) tại điểm thứ 2 là N (N khác A). Gọi Q là giao điểm của AI và FE. Nối AD cắt đường tròn (I; r) tại điểm thứ 2 là P (P khác D). Kéo dài DQ cắt đường tròn (I; r) tại điểm thứ 2 là T (T khác D). Chứng minh rằng. + Cho p là số nguyên tố sao cho tồn tại các số nguyên dương x y thỏa mãn 3 3 x y p xy 6 8. Tìm giá trị lớn nhất của p.
Đề tuyển sinh lớp 10 chuyên môn Toán năm 2021 - 2022 sở GDĐT Hải Phòng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán năm 2021 – 2022 sở GD&ĐT Hải Phòng; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm (bảng chính thức do sở Giáo dục và Đào tạo thành phố Hải Phòng công bố). Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán năm 2021 – 2022 sở GD&ĐT Hải Phòng : + Cho hai phương trình (ẩn x; tham số a b). Tìm tất cả các cặp số thực (a;b) để mỗi phương trình trên đều có hai nghiệm phân biệt thỏa mãn 21 0 xxx, trong đó 0 x là nghiệm chung của hai phương trình và 1 2 x x, lần lượt là hai nghiệm còn lại của phương trình (1), phương trình (2). + Cho tam giác nhọn ABC (AB AC) nội tiếp đường tròn (O). Gọi I là tâm đường tròn bàng tiếp trong góc BAC của tam giác ABC. Đường thẳng AI cắt BC tại D, cắt đường tròn (O) tại EE A. a) Chứng minh E là tâm đường tròn ngoại tiếp tam giác IBC. b) Kẻ IH vuông góc với BC tại H. Đường thẳng EH cắt đường tròn (O) tại F (F E). Chứng minh AF FI. c) Đường thẳng FD cắt đường tròn (O) tại MM F, đường thẳng IM cắt đường tròn (O) tại N (N M). Đường thẳng qua O song song với FI cắt AI tại J, đường thẳng qua J song song với AH cắt IH tại P. Chứng minh ba điểm NEP thẳng hàng. + Cho tập hợp X = {1;2;3;…;101}. Tìm số tự nhiên n (n ≥ 3) nhỏ nhất sao cho với mọi tập con A tùy ý gồm n phần tử của X đều tồn tại 3 phần tử đôi một phân biệt abc A thỏa mãn abc.
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 - 2022 sở GDĐT Hà Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 – 2022 sở GD&ĐT Hà Nam; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm (bảng chính thức do sở Giáo dục và Đào tạo tỉnh Hà Nam công bố). Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 – 2022 sở GD&ĐT Hà Nam : + Cho đường tròn O đường kính AB R 2. Gọi ∆ là tiếp tuyến của O tại A. Trên ∆ lấy điểm M sao cho MA R. Qua M vẽ tiếp tuyến MC (C thuộc đường tròn O, C khác A). Gọi H và D lần lượt là hình chiếu vuông góc của C trên AB và AM. Gọi d là đường thẳng đi qua điểm O và vuông góc với AB. Gọi N là giao điểm của d và BC. 1. Chứng minh OM // BN và MC = NO. 2. Gọi Q là giao điểm của MB và CH, K là giao điểm của AC và OM. Chứng minh đường thẳng QK đi qua trung điểm của đoạn thẳng BC. 3. Gọi F là giao điểm của QK và AM, E là giao điểm CD và OM. Chứng minh tứ giác FEQO là hình bình hành. Khi M thay đổi trên ∆, tìm giá trị lớn nhất của QF EO. + Giải phương trình 3 2 xyxz 3 2021 với x y và z là các số nguyên. + Cho hình vuông ABCD có độ dài cạnh bằng 1. Bên trong hình vuông người ta lấy tùy ý 2021 điểm phân biệt 1 2 2021 AA A … sao cho 2025 điểm 1 2 2021 ABCDA A A … không có ba điểm nào thẳng hàng. Chứng minh rằng từ 2025 điểm trên luôn tồn tại 3 điểm là 3 đỉnh của hình tam giác có diện tích không quá 1.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 - 2022 sở GDĐT Đồng Nai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 – 2022 sở GD&ĐT Đồng Nai; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 – 2022 sở GD&ĐT Đồng Nai : + Trong 2021 số nguyên dương đầu tiên, có bao nhiêu số không chia hết cho 7 và không chia hết cho 11? + Tìm đa thức bậc ba P x x ax bx c 3 2 với a b c là các hệ số thực. Biết P(x) chia hết cho (x – 1) và P(x) chia cho (x – 2) và (x – 3) đều có số dư là 6. + Tìm các số nguyên x và y thỏa mãn bất đẳng thức.