Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển tập 20 năm đề thi tuyển sinh vào môn Toán sở GD ĐT Bình Định

Nội dung Tuyển tập 20 năm đề thi tuyển sinh vào môn Toán sở GD ĐT Bình Định Bản PDF - Nội dung bài viết Tuyển tập 20 năm đề thi tuyển sinh vào môn Toán sở GD ĐT Bình Định Tuyển tập 20 năm đề thi tuyển sinh vào môn Toán sở GD ĐT Bình Định Tài liệu này bao gồm 32 trang, được biên soạn bởi các tác giả: Đào Xuân Luyện, Huỳnh Duy Thủy, Nguyễn Công Nhã, Nguyễn Duy Chiến, Trần Văn Chớ, Cao Hoàng Hạ, Trần Đức An. Được tổng hợp từ các đề thi tuyển sinh vào lớp 10 môn Toán của sở Giáo dục và Đào tạo tỉnh Bình Định trong vòng 20 năm qua, từ năm học 2000 – 2001 đến năm học 2019 – 2020. Danh sách các đề thi trong tài liệu gồm: Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2000 – 2001 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2001 – 2002 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2002 – 2003 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2003 – 2004 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2004 – 2005 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2005 – 2006 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2006 – 2007 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2007 – 2008 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2008 – 2009 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2009 – 2010 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2010 – 2011 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2011 – 2012 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2012 – 2013 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2013 – 2014 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2014 – 2015 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2015 – 2016 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2016 – 2017 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2017 – 2018 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2018 – 2019 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2019 – 2020 sở GD&ĐT Bình Định.

Nguồn: sytu.vn

Đọc Sách

Đề thi thử Toán vào 10 lần 1 năm 2023 - 2024 phòng GDĐT Lạng Giang - Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 1 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Lạng Giang, tỉnh Bắc Giang; đề thi hình thức 30% trắc nghiệm + 70% tự luận, thời gian làm bài 120 phút, đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 22 tháng 03 năm 2023. Trích dẫn Đề thi thử Toán vào 10 lần 1 năm 2023 – 2024 phòng GD&ĐT Lạng Giang – Bắc Giang : + Nhân dịp cuối năm, ở các siêu thị đã đưa ra nhiều hình thức khuyến mãi. Ở siêu thị Big C giá áo sơ mi nữ nhãn hiệu Blue được giảm giá như sau: Mua áo thứ I giảm 15% so với giá niêm yết, mua áo thứ II được giảm tiếp 10% so với giá đã giảm của áo thứ I, mua áo thứ III sẽ được giảm thêm 12% so với giá đã giảm của áo thứ II nên áo thứ 3 chỉ còn 269280 đồng. Giá niêm yết của loại áo sơ mi trên trong siêu thị là: A. 400000 đồng B. 410000 đồng C. 420000 đồng D. 450000 đồng. + Năm học 2022-2023, học kì I, trường THCS A có 500 học sinh đạt loại khá và giỏi. Học kì II, số học sinh khá tăng 2%, số học sinh giỏi tăng 4% nên tổng số học sinh khá và giỏi là 513 học sinh. Nhà trường phát thưởng cho học sinh đạt thành tích cho học kì II như sau: Mỗi học sinh giỏi là 15 quyển tập, mỗi học sinh khá là 10 quyển tập. Biết giá mỗi quyển tập bán trên thị trường là 9 500 đồng/quyển. Do mua số lượng lượng lớn công ty cung cấp có chính sách như sau: Nếu hóa đơn trên 40 000 000 đồng thì được giảm giá 5%; nếu hóa đơn trên 50 000 000 đồng thì được giảm giá 8%; nếu hóa đơn trên 60 000 000 đồng thì được giảm giá 10%. Hỏi nhà trường phải trả số tiền mua tập làm phần thưởng là bao nhiêu? + Cho đường tròn (O;R) có đường kính BC. Trên tia đối của tia BC lấy điểm A sao cho BO BA 2. Vẽ tiếp tuyến AD với đường tròn (O) (D là tiếp điểm) và dây cung DE của đường tròn (O) vuông góc với BC. 1. Chứng minh AE là tiếp tuyến của đường tròn (O). 2. Vẽ đường kính DF của đường tròn(O). Gọi P là giao điểm của EC và DF, G là giao điểm của hai đường thẳng BD và AE. Chứng minh BC EF và PO GE PC GB. 3. Vẽ cát tuyến AMN của đường tròn (O) (cát tuyến không đi qua O), các tiếp tuyến tại M và N của đường tròn (O) cắt nhau tại K. Chứng minh ba điểm KDE thẳng hàng.
Đề thi thử Toán vào lớp 10 năm 2023 - 2024 trường THPT Gang Thép - Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi thử tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 trường THPT Gang Thép, tỉnh Thái Nguyên; đề thi hình thức tự luận với 10 bài toán, thời gian làm bài 120 phút; đề thi có đáp án, lời giải chi tiết và thang chấm điểm. Trích dẫn Đề thi thử Toán vào lớp 10 năm 2023 – 2024 trường THPT Gang Thép – Thái Nguyên : + Cho hàm số y = 2×2, có đồ thị là đường Parabol (P). a) Không tính giá trị của hàm số, hãy cho biết khi x nhận giá trị là các số thực tăng dần từ 2023 đến 2024 thì giá trị tương ứng của hàm số tăng dần hay giảm dần? Vì sao? b) Tìm giá trị của tham số m để Parabol (P) cắt đường thẳng (d): y = mx + 3 tại điểm A có hoành độ bằng 1. + Quãng đường Thái Nguyên – Hải Phòng dài 150km. Một ô tô từ Thái Nguyên đi Hải Phòng, nghỉ lại ở Hải Phòng hết 3 giờ 15 phút, rồi trở lại Thái Nguyên, hết tất cả 10 giờ. Tính vận tốc của ô tô lúc về, biết rằng vận tốc lúc đi lớn hơn vận tốc lúc về là 10km/h. + Cho đường tròn (O;OA). Điểm I thuộc đoạn thẳng OA sao cho AI = 1/3AO. Vẽ đường tròn (I;IA). a) Xác định vị trí tương đối của các đường tròn (O) và (I). b) Kẻ một đường thẳng qua A, cắt các đường tròn (I) và (O) theo thứ tự ở B và C. Tính tỉ số AB/AC.
Đề thi thử Toán vào lớp 10 năm 2023 - 2024 trường THCS Lê Lợi - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 trường THCS Lê Lợi, tỉnh Thanh Hóa; đề thi có đáp án và hướng dẫn giải. Trích dẫn Đề thi thử Toán vào lớp 10 năm 2023 – 2024 trường THCS Lê Lợi – Thanh Hóa : + Cho hàm số: y = ax + b. Tìm a, b biết đồ thị của hàm số đã cho song song với đường thẳng (1 d): y = 3x – 5 và đi qua giao điểm Q của hai đường thẳng (2 d): y = 2x – 3; (3 d): y = – 3x + 2. + Tìm các giá trị của tham số m để phương trình 2 2 x 2 (m 1) x m 0 có hai nghiệm phân biệt 1 2 x x thỏa mãn hệ thức 2 1 2 1 2 x x 6m x 2x. + Cho tam giác ABC nhọn (AB < AC). Đường cao BD, CE cắt nhau ở H. DE cắt BC ở F. M là trung điểm của BC. Chứng minh rằng: 1) Tứ giác BEDC là tứ giác nội tiếp. 2) FE. FD = FB. FC. 3) FH vuông góc với AM.
Đề thi thử Toán vào lớp 10 năm 2023 - 2024 trường THCS Minh Khai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 trường THCS Minh Khai, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 24 tháng 02 năm 2023. Trích dẫn Đề thi thử Toán vào lớp 10 năm 2023 – 2024 trường THCS Minh Khai – Hà Nội : + Cho đường thẳng (d): y = -x + 2m – 1 a) Tìm m để đường thẳng (d) đi qua điểm Q(1;-2). b) Tìm m để đường thẳng (d) và đường thẳng (d’): y = 2x − 3 cắt nhau tại một điểm nằm về phía bên trái trục tung. + Cho tam giác ABC. Đường tròn (O) nội tiếp tam giác ABC tiếp xúc BC, AB lần lượt tại D và E. a) Chứng minh bốn điểm B; D; O; E cùng thuộc một đường tròn. b) Kẻ đường kính DF của (O). Tiếp tuyến của (O) tại F cắt AB; AC lần lượt tại P và Q. Chứng minh tam giác BOP vuông. c) Kéo dài AF cắt BC tại M. Chứng minh: BD = CM. + Cho a, b, c là độ dài ba cạnh của tam giác thoả mãn: 2c + b = abc. Tìm giá trị nhỏ nhất của biểu thức P.