Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán THPT Quốc gia 2019 trường THPT Lý Thái Tổ - Bắc Ninh lần 1

Nhằm kiểm tra chất lượng môn Toán giữa học kỳ 1 đối với học sinh khối 12, đồng thời hướng đến kỳ thi THPTQG năm học 2018 – 2019 môn Toán, trường THPT Lý Thái Tổ – Bắc Ninh biên soạn và tiến hành thi đề thi thử Toán THPT Quốc gia 2019 trường lần 1, kỳ thi được diễn ra vào ngày 31/10/2018. Đề được biên soạn theo cấu trúc được dự đoán sẽ áp dụng cho kỳ thi năm nay: đề gồm 50 câu hỏi và bài toán trắc nghiệm khách quan, học sinh làm bài trong 90 phút, các câu hỏi mang nội dung Toán 10, Toán 11 và Toán 12, trong đó nội dung Toán 12 giới hạn trong các chủ đề đã được học, đề thi có đáp án đầy đủ các mã đề 101, 102, 103, 104, 105, 106, 107, 108. Trích dẫn đề thi thử Toán THPT Quốc gia 2019 trường THPT Lý Thái Tổ – Bắc Ninh lần 1 : + Một vật chuyển động theo quy luật s = -1/3.t^3 + 6t^2 với t (giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và s (mét) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi trong khoảng thời gian 10 giây, kể từ lúc bắt đầu chuyển động tại thời điểm t bằng bao nhiêu giây thì vận tốc của vật đạt giá trị lớn nhất? [ads] + Một người thợ thủ công cần làm một cái thùng hình hộp đứng không nắp đáy là hình vuông có thể tích 100cm3. Để tiết kiệm vật liệu làm thùng, người đó thợ cần thiết kế sao cho tổng S của diện tích xung quanh và diện tich mặt đáy là nhỏ nhất. Tìm S. + Cho hình hộp ABCD.A’B’C’D’ có cạnh AB = a và diện tích tứ giác (A’B’CD) là 2a^2. Mặt phẳng (A’B’CD) tạo với mặt phẳng đáy một góc 60 độ, khoảng cách giữa hai đường thẳng AA’ và CD bằng 3a√21/7. Tính thể tích V của khối hộp đã cho, biết hình chiếu của đỉnh A’ thuộc miền giữa hai đường thẳng AB và CD, đồng thời khoảng cách giữa AB và CD nhỏ hơn 4a.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Toán THPTQG 2018 trường THPT Cẩm Bình - Hà Tĩnh lần 3
Đề thi thử Toán THPTQG 2018 trường THPT Cẩm Bình – Hà Tĩnh lần 3 mã đề 103 được biên soạn bám sát cấu trúc đề minh họa môn Toán 2018 của Bộ Giáo dục và Đào tạo, đề gồm 50 câu hỏi trắc nghiệm khách quan, thời gian làm bài 90 phút, đề bao gồm kiến thức Toán 11 và Toán 12 – đây là điểm mới so với đề thi THPTQG môn Toán năm 2017, đề thi có đáp án . Trích dẫn đề thi thử Toán THPTQG 2018 : + Có 20 tấm thẻ được đánh số từ 1 đến 20. Chọn ngẫu nhiên 8 tấm thẻ , tính xác suất để chọn được 5 tấm mang số lẻ, 3 tấm mang số chẵn trong đó có đúng 3 tấm thẻ mang số chia hết cho 3. Kết quả đúng là? [ads] + Cho hình chóp S.ABC có đáy là tam giác đều cạnh bằng a, tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính thể tích của khối cầu ngoại tiếp hình chóp đã cho. + Giả sử cứ sau một năm diện tích đất nộng nghiệp của nước ta giảma phần trăm diện tích hiện có. Hỏi sau 10 năm nữa diện tích đất nông nghiệp của nước ta bằng bao nhiêu phần trăm diện tích hiện nay?
Đề thi thử Toán THPTQG 2018 trường THPT Võ Thành Trinh - An Giang lần 2
Đề thi thử Toán THPTQG 2018 trường THPT Võ Thành Trinh – An Giang lần 2 mã đề 132 gồm 50 câu hỏi trắc nghiệm khách quan, thời gia làm bài 90 phút, kỳ thi được tổ chức vào ngày 16 tháng 05 năm 2018. Trích dẫn đề thi thử Toán THPTQG 2018 : + Một mảnh vườn toán học có dạng hình chữ nhật, chiều dài là 16 m và chiều rộng là 8 m. Các nhà toán học dùng hai đường parabol có đỉnh là trung điểm của một cạnh dài và đi qua 2 điểm đầu của cạnh đối diện, phần mảnh vườn nằm ở miền trong của cả hai parabol (phần gạch sọc như hình vẽ minh họa) được trồng hoa hồng. Biết chi phí để trồng hoa hồng là 45000 đồng/m2. Hỏi các nhà toán học phải chi bao nhiêu tiền để trồng hoa trên phần mảnh vườn đó (số tiền được làm tròn đến hàng nghìn)? [ads] + Lớp 11B có 25 đoàn viên trong đó có 10 nam và 15 nữ. Chọn ngẫu nhiên 3 đoàn viên trong lớp để tham dự hội trại ngày 26 tháng 3. Tính xác suất để trong 3 đoàn viên được chọn có 2 nam và 1 nữ. + Đội học sinh giỏi trường THPT Võ Thành Trinh – An Giang gồm có 8 học sinh khối 12; 6 học sinh khối 11 và 5 học sinh khối 10. Chọn ngẫu nhiên 8 học sinh. Xác suất để trong 8 học sinh được chọn có đủ 3 khối là?
Đề thi thử THPTQG 2018 môn Toán trường chuyên Lê Hồng Phong - Nam Định
Đề thi thử THPTQG 2018 môn Toán trường chuyên Lê Hồng Phong – Nam Định mã đề 135 gồm 6 trang với 50 câu hỏi trắc nghiệm khách quan, thời gian làm bài 90 phút, đề được biên soạn bám sát cấu trúc đề tham khảo Toán 2018 của Bộ Giáo dục và Đào tạo, kỳ thi được tổ chức vào ngày 15/05/2018, đề thi có đáp án . Trích dẫn đề thi thử THPTQG 2018 môn Toán : + Cho hàm số y = (x^2 − 2x − 3)/(x^2 − 1). Trong các mệnh đề sau mệnh đề nào đúng? A. Đồ thị hàm số có 1 đường tiệm cận đứng và 2 đường tiệm cận ngang. B. Đồ thị hàm số có 2 đường tiệm cận đứng và 2 đường tiệm cận ngang. C. Đồ thị hàm số có 2 đường tiệm cận đứng và 1 đường tiệm cận ngang. D. Đồ thị hàm số có 1 đường tiệm cận đứng và 1 đường tiệm cận ngang. [ads] + Một đa giác đều có 24 đỉnh, tất cả các cạnh của đa giác sơn màu xanh và tất cả các đường chéo của đa giác đó sơn màu đỏ. Gọi X là tập hợp tất cả các tam giác có ba đỉnh là các đỉnh của đa giác đều trên. Người ta chọn ngẫu nhiên từ X một tam giác, tính xác suất để chọn được tam giác có ba cạnh cùng màu. + Hồng muốn qua nhà Hoa để cùng Hoa đến chơi nhà Bình. Từ nhà Hồng đến nhà Hoa có 3 con đường đi, từ nhà Hoa tới nhà Bình có 2 con đường đi. Hỏi Hồng có bao nhiêu cách chọn đường đi đến nhà Bình?
Đề thi thử Toán THPT Quốc gia 2018 sở GD và ĐT Tiền Giang
Đề thi thử Toán THPT Quốc gia 2018 sở GD và ĐT Tiền Giang mã đề 173 được biên soạn theo hình thức trắc nghiệm khách quan, thời gian làm bài 90 phút, kỳ thi được tổ chức vào ngày 15/05/2018, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi thử Toán THPT Quốc gia 2018 sở Tiền Giang : + Một thanh sắt chiều dài AB = 100(m) được cắt thành hai phần AC và CB với AC = x(m). Đoạn AC được uốn thành một hình vuông có chu vi bằng AC và đoạn CB uốn thành tam giác đều có chu vi bằng CB. Khi tổng diện tích của hình vuông và tam giác nhỏ nhất, mệnh đề nào dưới đây đúng? [ads] + Trong không gian Oxyz, cho hai điểm M(1;2;3), N(3;4;5) và mặt phẳng (P): x + 2y + 3z – 14 = 0. Gọi Δ là đường thẳng thay đổi nằm trong mặt phẳng (P), các điểm H, K lần lượt là hình chiếu vuông góc của M, N trên Δ. Biết rằng khi MH = NK thì trung điểm của HK luôn thuộc một đường thẳng d cố định, phương trình của d là? + Xét đồ thị (C) của hàm số y = x^3 + 3ax + b với a, b là các số thực. Gọi M, N là hai điểm phân biệt thuộc (C) sao cho tiếp tuyến với (C) tại hai điểm đó có hệ số góc bằng 3. Biết khoảng cách từ gốc tọa độ tới đường thẳng MN bằng 1, giá trị nhỏ nhất của a^2 + b^2 bằng?