Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề hệ số góc của đường thẳng y = ax + b (a khác 0)

Nội dung Chuyên đề hệ số góc của đường thẳng y = ax + b (a khác 0) Bản PDF - Nội dung bài viết Chuyên đề hệ số góc của đường thẳng y = ax + b Chuyên đề hệ số góc của đường thẳng y = ax + b Tài liệu này bao gồm 16 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, nhằm tổng hợp kiến thức quan trọng về hệ số góc của đường thẳng y = ax + b (a khác 0). Tài liệu cung cấp các phần lí thuyết cơ bản, các dạng bài tập tự luận và trắc nghiệm được hướng dẫn cụ thể để hỗ trợ học sinh trong quá trình học chương trình Đại số lớp 9 chương 2 bài số 5. A. TÓM TẮT LÍ THUYẾT Tài liệu cung cấp lí thuyết về cách tìm hệ số góc của đường thẳng, xác định góc tạo bởi đường thẳng và trục Ox, và cách xác định đường thẳng khi biết hệ số góc. B. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1: Tìm hệ số góc của đường thẳng bằng cách sử dụng kiến thức về vị trí tương đối của hai đường thẳng và hệ số góc. Dạng 2: Xác định góc tạo bởi đường thẳng và trục Ox bằng cách sử dụng các phương pháp như vẽ đường thẳng trên mặt phẳng tọa độ và sử dụng tỉ lệ lượng giác của tam giác vuông. Dạng 3: Xác định phương trình của đường thẳng khi biết hệ số góc, dựa vào kiến thức về góc và hệ số góc của đường thẳng. C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ Bên cạnh các bài tập, tài liệu còn cung cấp phần trắc nghiệm để học sinh rèn luyện và tự kiểm tra nắng lực về chuyên đề này.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề hình cầu, diện tích mặt cầu và thể tích hình cầu
Tài liệu gồm 52 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề hình cầu, diện tích mặt cầu và thể tích hình cầu, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 4 bài số 3. A. TRỌNG TÂM CƠ BẢN CẦN ĐẠT I. TÓM TẮT LÝ THUYẾT 1. Hình cầu. + Khi quay nửa hình tròn tâm O, bán kính R một vòng quanh đường kính AB cố định ta thu được một hình cầu. + Nửa đường tròn trong phép quay nói trên tạo thành một mặt cầu. + Điểm O gọi là tâm, R là bán kính của hình cầu hay mặt cầu đó. 2. Cắt hình cầu bởi một mặt phẳng. + Khi cắt hình cầu bởi một mặt phẳng ta được một hình tròn. + Khi cắt mặt cầu bán kính R bởi một mặt phẳng ta được một đường tròn, trong đó: đường tròn đó có bán kính R nếu mặt phẳng đi qua tâm (gọi là đường tròn lớn). 3. Diện tích, thể tích. Cho hình cầu bán kính R: + Diện tích mặt cầu: S = 4piR^2. + Thể tích hình cầu: V = 4/3piR^3. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Tính diện tích mặt cầu, thể tích hình cầu và các đại lượng liên quan. Phương pháp giải: Áp dụng các công thức S = 4piR^2 và V = 4/3piR^3 để tính diện tích mặt cầu, thể tích hình cầu và các đại lượng liên quan. Dạng 2. Bài tập tổng hợp. Phương pháp giải: Vận dụng các công thức trên và các kiến thức đã học để tính các đại lượng chưa biết rồi từ đó tính diện tích mặt cầu, thể tích hình cầu. III. BÀI TẬP CƠ BẢN VỀ NHÀ B. NÂNG CAO VÀ PHÁT TRIỂN TƯ DUY C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. TỰ LUYỆN CƠ BẢN VÀ NÂNG CAO
Chuyên đề hình trụ, diện tích xung quanh và thể tích của hình trụ
Tài liệu gồm 26 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề hình trụ, diện tích xung quanh và thể tích của hình trụ, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 3 bài số 1. A. TRỌNG TÂM CƠ BẢN CẦN ĐẠT I. TÓM TẮT LÝ THUYẾT Cho hình trụ có bán kính đáy R và chiều cao h. Khi đó: 1. Diện tích xung quanh: Sxq = 2piRh. 2. Diện tích đáy: S = piR^2. 3. Diện tích toàn phần: Stp = 2piRh + 2piR^2. 4. Thể tích: V = piR^2h. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Tính bán kính đáy, chiều cao, diện tích xung quanh, diện tích toàn phần và thể tích của hình trụ. Phương pháp giải: Vận dụng các công thức trên để tính bán kính đáy, chiều cao, diện tích đáy, diện tích xung quanh, diện tích toàn phần và thể tích của hình trụ. Dạng 2. Bài tập tổng hợp. Phương pháp giải: Vận dụng một cách linh hoạt kiến thức về hình học phẳng đã được học kết hợp các công thức và lí thuyết về hình trụ kết hợp giải bài tập. III. BÀI TẬP CƠ BẢN VỀ NHÀ B. NÂNG CAO PHÁT TRIỂN TƯ DUY C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. TỰ LUYỆN CƠ BẢN VÀ NÂNG CAO
Chuyên đề diện tích hình tròn, hình quạt tròn
Tài liệu gồm 28 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề diện tích hình tròn, hình quạt tròn, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 3 bài số 10. A. TRỌNG TÂM CƠ BẢN CẦN ĐẠT I. TÓM TẮT LÝ THUYẾT 1. Công thức diện tích hình tròn: Diện tích S của một hình tròn bán kinh R được tính theo công thức: S = pi.R^2. 2. Công thức diện tích hình quạt tròn: Diện tích hình quạt tròn bán kính E, cung n0 được tính theo công thức: S = piR^2n/360 hay S = lR/2 (l là độ dài cung n0 của hình quạt tròn). II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Tính diện tích hình tròn, hình quạt tròn và các loại lương có liên quan. Phương pháp giải: Áp dụng các công thức trên và các kiến thức đã có. Dạng 2. Bài toán tổng hợp. Phương pháp giải: Sử dụng linh hoạt các kiến thức đã học để tính góc ở tâm, bán kính đường tròn. Từ đó tính được diện tích hình tròn và diện tích hình quạt tròn. III. BÀI TẬP CƠ BẢN VỀ NHÀ B. NÂNG CAO VÀ PHÁT TRIỂN TƯ DUY C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. TỰ LUYỆN CƠ BẢN VÀ NÂNG CAO
Chuyên đề độ dài đường tròn, cung tròn
Tài liệu gồm 29 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề độ dài đường tròn, cung tròn, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 3 bài số 9. A. TRỌNG TÂM CƠ BẢN CẦN ĐẠT I. TÓM TẮT LÝ THUYẾT 1. Công thức tính độ dài đường tròn (chu vi đường tròn). Độ dài (C) của một đường tròn bán kính R được tính theo công thức: C = 2piR hoặc C = pid (với d = 2R). 2. Công thức tính độ dài cung tròn. Trên đường tròn bán kính R, độ dài l của một cung n° được tính theo công thức: l = piRn/180. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Tính độ dài đường tròn, cung tròn. Phương pháp giải: Áp dụng công thức đã nêu trong phần tóm tắt lý thuyết. Dạng 2. Một số bài toán tổng hợp. Phương pháp giải: Áp dụng công thức trên và các kiến thức đã có. III. BÀI TẬP CƠ BẢN VỀ NHÀ B. NÂNG CAO PHÁT TRIỂN TƯ DUY C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. PHIẾU BÀI TỰ LUYỆN CƠ BẢN VÀ NÂNG CAO