Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Hòa Bình

Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Hòa Bình Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chuyên) năm 2023-2024 sở GD&ĐT Hòa Bình Đề thi tuyển sinh môn Toán (chuyên) năm 2023-2024 sở GD&ĐT Hòa Bình Xin chào quý thầy cô và các em học sinh! Hôm nay, chúng ta sẽ cùng tìm hiểu về nội dung của đề thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán (chuyên) năm học 2023-2024 tại sở Giáo dục và Đào tạo tỉnh Hòa Bình, được tổ chức vào ngày 07 tháng 06 năm 2023. Trích dẫn một số câu hỏi trong đề tuyển sinh môn Toán (chuyên) năm 2023-2024 tại sở GD&ĐT Hòa Bình: Cho đường thẳng \( (d): y = (m + 2)x + 3 \) trong mặt phẳng tọa độ Oxy. Hãy tìm giá trị của \( m \) sao cho đường thẳng \( (d) \) cắt hai trục Ox, Oy tại hai điểm A và B sao cho tam giác AOB là tam giác cân. Giải bài toán: Một con Robot di chuyển từ điểm A đến điểm B theo quy tắc cố định và dừng lại sau một quãng đường nhất định. Hỏi quãng đường từ A đến B nếu thời gian di chuyển là 253 phút với vận tốc không đổi là 40cm/phút? Chứng minh rằng: a) Tứ giác PEDQ nội tiếp trong một đường tròn; b) Tam giác AKD đồng dạng với tam giác AQM; c) AK.AM = AB.AC; d) Tâm đường tròn ngoại tiếp tam giác APQ luôn nằm trên một đường cố định khi dây ED thay đổi. Với những câu hỏi thú vị và sâu sắc như vậy, chúng ta hãy cùng chuẩn bị kỹ lưỡng và tự tin để vượt qua thử thách trong kỳ thi tuyển sinh sắp tới. Chúc quý thầy cô và các em học sinh thành công!

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra Toán 9 thi vào 10 năm 2024 - 2025 đợt 1 phòng GDĐT Ứng Hòa - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra rà soát chất lượng học sinh môn Toán 9 chuẩn bị thi vào lớp 10 năm học 2024 – 2025 đợt 1 phòng Giáo dục và Đào tạo huyện Ứng Hòa, thành phố Hà Nội. Trích dẫn Đề kiểm tra Toán 9 thi vào 10 năm 2024 – 2025 đợt 1 phòng GD&ĐT Ứng Hòa – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một thửa ruộng hình chữ nhật có chu vi là 300m. Tính diện tích của thửa ruộng biết rằng nếu giảm chiều dài đi 3 lần, tăng chiều rộng 2 lần thì chu vi của thửa ruộng không thay đổi. + Một thùng đựng sơn hình trụ có đường kính đáy là 16cm và chiều cao là 24cm. Tính diện tích vật liệu để tạo nên một vỏ thùng đựng sơn đó (cho biết phần mép nối không đáng kể và lấy pi ~ 3,14). + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = 2mx + 1 – m2 (m là tham số) và parabol (P): y = x2. a. Chứng minh với mọi giá trị m, đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt có hoành độ x1, x2. b. Tìm m để x1, x2 là số đo độ dài hai đường chéo của một hình thoi có chu vi 45.
Đề khảo sát Toán vào lớp 10 năm 2024 trường Nguyễn Tất Thành - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra khảo sát môn Toán tuyển sinh vào lớp 10 năm 2024 trường THCS & THPT Nguyễn Tất Thành, Đại học Sư phạm Hà Nội, thành phố Hà Nội; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán vào lớp 10 năm 2024 trường Nguyễn Tất Thành – Hà Nội : + Tuần trước mẹ Nam đi chợ mua 20 quả trứng gà và 15 quả trứng vịt hết 98 nghìn đồng. Tuần này mẹ Nam mua 14 quả trứng gà và 20 quả trứng vịt hết 99 nghìn đồng. Tính giá một quả trứng gà. Biết rằng giá mỗi quả trứng gà và mỗi quả trứng vịt không thay đổi. + Trên nửa đường tròn (O;R) đường kính AB lấy hai điểm C và D sao cho AC = R và BD = R2. Hai đường thẳng AC và BD cắt nhau tại điểm M. Tính số đo AMB. + Hai xe ô tô cùng xuất phát từ A chuyển động thẳng đều theo hai hướng tạo với nhau một góc 60 độ. Biết vận tốc của hai xe lần lượt là 50 km/h và 60 km/h. Hỏi sau khi xuất phát 1 giờ khoảng cách giữa hai xe là bao nhiêu kilômét? (Kết quả làm tròn đến chữ số thập phân thứ nhất).
Đề khảo sát Toán vào 10 năm 2024 - 2025 trường chuyên Lam Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán tuyển sinh vào lớp 10 năm học 2024 – 2025 trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 07 tháng 04 năm 2024. Trích dẫn Đề khảo sát Toán vào 10 năm 2024 – 2025 trường chuyên Lam Sơn – Thanh Hóa : + Cho phương trình: x2 – (4m – 1)x + 3m2 – 2m = 0 (m là tham số). a) Giải phương trình khi m = 2. b) Tìm m để phương trình có hai nghiệm x1, x2 sao cho. + Cho hai đường tròn (O) và (O’) cắt nhau tại hai điểm A và B. Kẻ tiếp tuyến chung DE của hai đường tròn với D thuộc (O) và E thuộc (O’) sao cho B gần tiếp tuyến đó hơn so với A. a) Chứng minh rằng DAB = BDE. b) Đường thẳng DB cắt AE tại P, đường thẳng EB cắt AD tại Q. Chứng minh tứ giác APBQ nội tiếp đường tròn. c) Chứng minh bán kính đường tròn ngoại tiếp tam giác ADE bằng bán kính đường tròn ngoại tiếp tam giác BDE.
Đề giao lưu Toán vào lớp 10 năm 2024 trường THPT Quảng Xương 1 - Thanh Hoá
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi giao lưu kiến thức môn Toán tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 trường THPT Quảng Xương 1, tỉnh Thanh Hoá; kỳ thi được diễn ra vào ngày 07 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề giao lưu Toán vào lớp 10 năm 2024 trường THPT Quảng Xương 1 – Thanh Hoá : + Trong mặt phẳng tọa độ Oxy cho đường thẳng d có phương trình y m x m (2 1) 1 (m là tham số). Tìm m để đường thẳng d cắt đường thẳng d có phương trình y x 1 tại điểm thuộc trục tung. + Cho đường tròn O R có AB là đường kính. Vẽ đường kính CD không trùng với AB. Tiếp tuyến tại A của đường tròn O R cắt các đường thẳng BC và BD lần lượt tại E và F. Tiếp tuyến tại D của đường tròn O R cắt đường thẳng AF tại Q. 1. Chứng minh tứ giác AODQ nội tiếp. 2. Chứng minh AE AQ AB AO. 3. Biết điểm C di chuyển trên đường tròn O R (C không trùng với A và B) khi biểu thức EB EC FB FD đạt giá trị nhỏ nhất, tính số đo góc BAC.