Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử TNTHPT 2021 môn Toán lần 1 trường THPT Yên Dũng 2 - Bắc Giang

Nhằm giúp các em học sinh khối 12 ôn tập kiến thức, rèn luyện kỹ năng giải toán, ngày … tháng 12 năm 2020, trường THPT Yên Dũng số 2, tỉnh Bắc Giang tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông môn Toán năm học 2020 – 2021 lần thứ nhất. Đề thi thử TNTHPT 2021 môn Toán lần 1 trường THPT Yên Dũng 2 – Bắc Giang mã đề 901 gồm 07 trang, đề được biên soạn theo hình thức đề thi trắc nghiệm với 50 câu hỏi và bài toán, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án mã đề 901, 902, 903, 904, 905, 906, 907, 908. Trích dẫn đề thi thử TNTHPT 2021 môn Toán lần 1 trường THPT Yên Dũng 2 – Bắc Giang : + Cho hình chóp S.ABCD có đáy là hình vuông và có mặt phẳng (SAB) vuông góc với mặt phẳng đáy, tam giác SAB là tam giác đều. Gọi I và E lần lượt là trung điểm của cạnh AB và BC; H là hình chiếu vuông góc của I lên cạnh SC. Khẳng định nào sau đây sai? A. Mặt phẳng (SIC) vuông góc với mặt phẳng (SDE). B. Mặt phẳng (SAI) vuông góc với mặt phẳng (SBC). C. Góc giữa hai mặt phẳng (SAB) và (SIC) là góc BIC. D. Góc giữa hai mặt phẳng (SIC) và (SBC) là góc giữa hai đường thẳng IH và BH. + Một đề thi thử THPT Quốc gia môn Toán dạng trắc nghiệm gồm 50 câu, mỗi câu có 4 phương án trả lời trong đó chỉ có 1 phương án đúng, mỗi câu trả lời đúng được 0,2 điểm. Một thí sinh làm bài bằng cách chọn ngẫu nhiên 1 trong 4 phương án ở mỗi câu. Tính xác suất để thí sinh đó được 6 điểm. + Cho hình lăng trụ ABC.A’B’C’ có đáy là tam vuông cân tại A. Hình chiếu vuông góc của điểm A’ lên mặt phẳng (ABC) trùng với trọng tâm tam giác ABC. Biết khoảng cách giữa hai đường thẳng AA’ và BC bằng √17a/6, cạnh bên AA’ bằng 2a. Tính theo a thể tích V của khối lăng trụ ABC.A’B’C’ biết AB < a√3.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tốt nghiệp THPT năm 2023 môn Toán sở GDĐT Yên Bái
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2023 môn Toán sở Giáo dục và Đào tạo tỉnh Yên Bái (mã đề 001); kỳ thi được diễn ra vào ngày 11 tháng 04 năm 2023. Trích dẫn Đề thi thử tốt nghiệp THPT năm 2023 môn Toán sở GD&ĐT Yên Bái : + Một nhóm gồm 10 học sinh trong đó có hai bạn A và B đứng ngẫu nhiên thành một hàng. Xác suất để hai bạn A và B đứng cạnh nhau là? + Tính thể tích V của phần vật thể giới hạn bởi hai mặt phẳng x = 1 và x = 3, biết rằng khi cắt vật thể bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x (1 ≤ x ≤ 3) thì được thiết diện là một hình chữ nhật có độ dài hai cạnh là 3x và 3×2 – 2. + Trong không gian Oxyz, cho điểm A(1;2;−3) và mặt phẳng (P): 2x + 2y − z + 9 = 0. Đường thẳng d đi qua A và vuông góc với mặt phẳng (Q): 3x + 4y – 4z + 5 = 0 cắt mặt phẳng (P) tại điểm B. Điểm M nằm trong mặt phẳng (P), nhìn đoạn AB dưới góc vuông và độ dài MB lớn nhất. Tính độ dài MB.
Đề thi thử tốt nghiệp THPT 2023 môn Toán lần 2 liên trường THPT - Nghệ An
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2023 môn Toán lần 2 liên trường THPT trực thuộc sở GD&ĐT tỉnh Nghệ An; đề thi có đáp án tất cả các mã đề; kỳ thi được diễn ra vào chiều thứ Bảy ngày 15 tháng 04 năm 2023. Trích dẫn Đề thi thử tốt nghiệp THPT 2023 môn Toán lần 2 liên trường THPT – Nghệ An : + Người ta sản xuất thùng phuy sắt có hình dạng là một hình trụ (có nắp đậy kín) bằng cách cán và gò các tấm thép có độ dày 1mm, biết chiều cao của thùng phuy là 876mm, đường kính ngoài của thùng phuy là 580mm và khối lượng riêng của thép là 7850kg/m3. Hỏi mỗi thùng phuy nặng khoảng bao nhiêu kg (tính gần đúng sau dấu phẩy đến 2 chữ số thập phân)? + Cho hàm số y = f(x) có đạo hàm là f'(x) = (x – a)(x − b) với a, b là hai hằng số và a < b, biết rằng f(b) = 0 và hàm số g(x) = |4×3 + (2 – 3f(a))x2 – 2f(a)x + m| (với m là tham số). Khi đó hàm số g[f(x)] có tối đa bao nhiêu điểm cực trị? + Trong không gian Oxyz, cho mặt phẳng (P): 2x + ay + bz + c = 0 chứa đường thẳng d là giao tuyến của hai mặt phẳng (A): x + y – z + 1 = 0, (B): x + y – 2z − 1 = 0. Biết rằng khoảng cách từ điểm M(1;2;1) đến mặt phẳng (P) bằng 3. Khi đó giá trị a + b + c bằng?
Đề thi thử tốt nghiệp THPT năm 2023 môn Toán sở GDĐT Hưng Yên
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2023 môn Toán sở Giáo dục và Đào tạo tỉnh Hưng Yên; kỳ thi được diễn ra vào chiều thứ Sáu ngày 14 tháng 04 năm 2023; đề thi có đáp án tất cả các mã đề. Trích dẫn Đề thi thử tốt nghiệp THPT năm 2023 môn Toán sở GD&ĐT : + Cho hình lăng trụ tam giác đều ABC.A’B’C’. Gọi O là trọng tâm tam giác A’B’C’, (N) là hình nón ngoại tiếp hình chóp O’.ABC. Góc giữa đường sinh của (N) và mặt đáy là 60°, khoảng cách giữa hai đường thẳng A’B và C’C bằng a3. Tính thể tích khối cầu ngoại tiếp hình lăng trụ ABC.A’B’C’. + Trong không gian với hệ toạ độ Oxyz, cho bốn điểm A(2;3;−1), B(0;4;2), C(1;2;-1), D(7;2;1). Đặt T trong đó N di chuyển trên trục Ox. Giá trị nhỏ nhất của T thuộc khoảng nào dưới đây? + Cho hai hàm số f(x) và g(x) liên tục trên R và hàm số f'(x) = ax3 + bx2 + cx + d, g'(x) = qx2 + nx + p với a, q ≠ 0 có đồ thị như hình vẽ. Biết diện tích hình phẳng giới hạn bởi hai đồ thị hàm số y = f'(x) và y = g'(x) bằng 10 và f(2) = g(2). Tính diện tích hình phẳng giới hạn bởi hai đồ thị hàm số y = f(x) và y = g(x).
Đề thi thử tốt nghiệp THPT 2023 môn Toán trường THCS - THPT Hồng Đức - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2023 môn Toán trường THCS – THPT Hồng Đức, thành phố Hồ Chí Minh; đề thi có đáp án mã đề 001 002 003 004 và hướng dẫn giải chi tiết các câu vận dụng – vận dụng cao. Trích dẫn Đề thi thử tốt nghiệp THPT 2023 môn Toán trường THCS – THPT Hồng Đức – TP HCM : + Biết rằng vi khuẩn E.coli là vi khuẩn gây tiêu chảy đường ruột, gây đau bụng dữ dội, ngoài ra cứ sau 20 phút thì số lượng vi khuẩn tăng gấp đôi, nghĩa là số lượng tính theo công thức 0 2n S S 0 S là số lượng ban đầu, n là số lần nhân đôi. Ban đầu chỉ có 40 con vi khuẩn nói trên trong đường ruột, hỏi sau bao lâu số lượng vi khuẩn là 671088640 con? + Trong một đợt phong trào “Thanh niên tình nguyện” có 5 học sinh khối 12, 4 học sinh khối 11, và 3 học sinh khối 10, được chia làm nhiệm vụ ở 4 thôn khác nhau M, N, P, Q (Mỗi thôn 3 học sinh). Tính xác suất để thôn nào cũng có học sinh khối 12 và học sinh khối 11. + Cho tam giác ABC có BC a BAC 135. Trên đường thẳng vuông góc với (ABC) tại A lấy điểm S thỏa mãn SA a 2. Hình chiếu vuông góc của A trên SB, SC lần lượt là M, N. Số đo góc giữa hai mặt phẳng (ABC) và (AMN) bằng?