Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kỳ 1 Toán 11 năm học 2017 - 2018 trường THPT Hưng Nhân - Thái Bình

Đề thi học kỳ 1 Toán 11 năm học 2017 – 2018 trường THPT Hưng Nhân – Thái Bình gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án . Trích dẫn đề thi học kỳ 1 Toán 11 : + Trong cuộc tranh tài cầu lông, có 2n nam vận động viên và n nữ vận động viên tham gia. Mỗi vận động viên chơi đúng 1 trận với mỗi vận động viên khác. Nếu không có trận nào hòa và tỉ số các trận mà nữ thắng với các trận mà nam thắng là 7/5, thì n bằng? + Cho L1, L2, … L100 là các đường thẳng phân biệt. Mọi đường thẳng L4n, với n là số nguyên dương thì song song với nhau. Mọi đường thẳng L4n-3, với n là số nguyên dương, đều đi qua một điểm A cho trước. Số tối đa các giao điểm của các cặp đường thẳng lấy trong 100 đường thẳng trên là? [ads] + Cho hình chóp S.ABCD, đáy là tứ giác ABCD sao cho AD không song song BC. Gọi M, N lần lượt là trung điểm AB, SD. H là giao điểm của đường thẳng MN và mặt phẳng (SAC). O là giao điểm của AC và BD. Biết OB = OD. Tính tỷ số HM : HN.

Nguồn: toanmath.com

Đọc Sách

Đề thi HKI Toán 11 năm 2019 - 2020 trường THPT Ngô Gia Tự - Đắk Lắk
Theo đúng như kế hoạch đã đề ra trong phân phối chương trình Toán 11, ngày … tháng 12 năm 2019, trường THPT Ngô Gia Tự, tỉnh Đắk Lắk tổ chức kỳ thi kiểm tra học kỳ 1 môn Toán lớp 11 năm học 2019 – 2020. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi HKI Toán 11 năm 2019 – 2020 trường THPT Ngô Gia Tự – Đắk Lắk, đề có mã đề 001 gồm 02 trang, đề được biên soạn theo dạng đề trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm có 20 câu, chiếm 4,0 điểm, phần tự luận gồm 03 câu, chiếm 6,0 điểm, học sinh có 90 phút để hoàn thành bài thi, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HKI Toán 11 năm 2019 – 2020 trường THPT Ngô Gia Tự – Đắk Lắk : + Trong một hộp kín đựng 100 tấm thẻ như nhau được đánh số từ 1 đến 100. Lấy ngẫu nhiên 3 tấm thẻ trong hộp. a. Tính xác suất để lấy được ba tấm thẻ đều ghi số lẻ. b. Tính xác suất để lấy được ba tấm thẻ mà ba số ghi trên ba tấm thẻ đó lập thành một cấp số cộng. + Trong hệ tọa độ Oxy. Phép quay tâm O góc quay α biến điểm M(0;2) thành điểm N(2;0). Góc quay α có thể là góc nào sau đây? [ads] + Một tổ có 6 học sinh nam và 4 học sinh nữ. Giáo viên gọi một em lên bảng kiểm tra bài cũ. Hỏi giáo viên có bao nhiêu cách chọn? + Cho hình chóp S.ABCD có đáy ABCD là hình thang với AD là đáy lớn. a. Xác định giao tuyến của các mặt phẳng (SAC) và (SBD). b. Cho M, N, P lần lượt là trung điểm của SA, AB, CD. Tính diện tích td S của thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (MNP) biết SB = 8, BC = 6, góc MNP = 60 độ. + Phép tịnh tiến theo vectơ v biến điểm A thành điểm B. Khẳng định nào sau đây là đúng?
Đề thi học kì 1 Toán 11 năm 2019 - 2020 trường Nguyễn Chí Thanh - TP HCM
Với mục đích đánh giá định kì chất lượng dạy và học môn Toán của giáo viên và học sinh khối 11, ngày … tháng 12 năm 2019, trường THPT Nguyễn Chí Thanh, thành phố Hồ Chí Minh tổ chức kì thi kiểm tra học kì 1 Toán 11 năm học 2019 – 2020. Đề thi học kì 1 Toán 11 năm 2019 – 2020 trường Nguyễn Chí Thanh – TP HCM gồm có 01 trang với 09 bài toán tự luận, thời gian học sinh làm bài 90 phút (không kể thời gian giáo viên coi thi phát đề), đề thi có lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán 11 năm 2019 – 2020 trường Nguyễn Chí Thanh – TP HCM : + Cho hình chóp S.ABCD có ABCD là hình thang đáy lớn AB, biết AB = 2CD. Gọi G là trọng tâm của tam giác SBC và E, F lần lượt là trung điểm của các cạnh BC, AD. 1) Tìm giao tuyến của các mặt phẳng: (SAB) với (SCD) và (SAD) với (SBC). 2) Tìm giao điểm K của GF với (SAC). 3) I là giao điểm của BD với EF. Chứng minh: GI song song với (SAD). 4) (α) là mặt phẳng qua GI và song song với BC. Tìm thiết diện của (α) với hình chóp S.ABCD. [ads] + Một câu lạc bộ văn nghệ có 4 nam và 5 nữ. Nhà trường muốn chọn 4 em tham gia một tốp ca. Tính xác suất để tốp ca có cả nam lẫn nữ. + Trong khai triển (xy + x^2)^15 hãy tìm số hạng có số mũ của x bằng bình phương số mũ của y.
Đề thi HK1 Toán 11 năm 2019 - 2020 trường THPT Lê Quý Đôn - Quảng Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi HK1 Toán 11 năm học 2019 – 2020 trường THPT Lê Quý Đôn – Quảng Ninh, đề thi có mã đề 143 gồm có 4 trang với 25 câu trắc nghiệm và 3 câu tự luận, phần trắc nghiệm chiếm 5 điểm, phần tự luận chiếm 5 điểm, thời gian làm bài 90 phút, đề thi có đáp án. Trích dẫn đề thi HK1 Toán 11 năm 2019 – 2020 trường THPT Lê Quý Đôn – Quảng Ninh : + Cho hình chóp S.ABCD có đáy ABCD là hình thang có đáy lớn là AD. Lấy điểm M thuộc cạnh SD sao cho MD = 2MS. Giao tuyến của hai mặt phẳng (SBD) và (BCM) là đường thẳng nào trong các đường thẳng sau: A. Đường thẳng BD. B. Đường thẳng CM. C. Đường thẳng SB. D. Đường thẳng BM. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, gọi M và N lần lượt là trung điểm của các cạnh SA và SC. Tìm giao tuyến d của hai mặt phẳng (BMN) và (ABCD). A. d là đường thẳng đi qua S và song song với MN. B. d là đường thẳng đi qua B và song song với AC. C. d là đường thẳng đi qua S và song song với AD. D. d là đường thẳng đi qua B và song song với CD. [ads] + Trong không gian, cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Lấy P là trung điểm của SB. a) Chứng minh rằng PO // (SAD). b) Lấy M là một điểm nằm trên SC sao cho MC = 2MS. Hãy xác định thiết diện của mặt phẳng (MOP) khi cắt hình chóp S.ABCD. + Một hộp chứa 12 chiếc thẻ có kích thước như nhau, trong đó có 5 chiếc thẻ màu xanh được đánh số từ 1 đến 5; có 4 chiếc thẻ màu đỏ được đánh số từ 1 đến 4 và 3 chiếc thẻ màu vàng được đánh số từ 1 đến 3. Lấy ngẫu nhiên 2 chiếc thẻ từ hộp, tính xác suất để 2 chiếc thẻ được lấy vừa khác màu vừa khác số. + Một hộp có chứa 15 viên bi, trong đó có 4 bi xanh, 5 bi vàng và 6 bi đỏ. Lấy ngẫu nhiên 4 viên bi trong hộp. Tính xác suất sao cho 4 viên bi lấy ra: a) Có đúng 1 viên bi vàng. b) Có ít nhất 1 viên bi xanh.
Đề thi HK1 Toán 11 năm học 2019 - 2020 sở GDĐT Bà Rịa - Vũng Tàu
Ngày … tháng 12 năm 2019, sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu tổ chức kì thi kiểm tra học kì 1 môn Toán lớp 11 (khối THPT và khối GDTX) năm học 2019 – 2020. Đề thi HK1 Toán 11 năm học 2019 – 2020 sở GD&ĐT Bà Rịa – Vũng Tàu mã đề 01 gồm có 03 trang, đề được biên soạn theo dạng trắc nghiệm khách quan kết hợp với tự luận, trong đó: phần trắc nghiệm gồm có 20 câu, chiếm 4,0 điểm, học sinh làm bài trong 35 phút; phần tự luận gồm có 4 câu, chiếm 6,0 điểm, học sinh làm bài trong 55 phút; đề thi có đáp án và lời giải chi tiết các mã đề: 01, 02, 03, 04. Trích dẫn đề thi HK1 Toán 11 năm học 2019 – 2020 sở GD&ĐT Bà Rịa – Vũng Tàu : + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm là O. Gọi M là trung điểm của SC. a) Xác định giao tuyến của hai mặt phẳng (SAB) và (SCD). b) Chứng minh đường thẳng OM song song với mặt phẳng (SAD). c) Gọi N là trung điểm của BO; là giao điểm của (AMN) với SD. Tính tỷ số SI/SD. + Người ta trồng 5151 cây theo dạng một hình tam giác như sau: hàng thứ nhất trồng 1 cây, hàng thứ hai trồng 2 cây, hàng thứ ba trồng 3 cây … cứ tiếp tục trồng như thế cho đến khi hết số cây. Số hàng cây được trồng là? [ads] + Cho tứ diện ABCD. Gọi I, J và K lần lượt là trung điểm của AC, BC và BD. Giao tuyến của hai mặt phẳng (ABD) và (UK) là đường thẳng A. IK. B.JK. C. qua K và song song với AB. D. qua K và song song với AD. + Gọi (C) là đường tròn ngoại tiếp hình vuông ABCD cạnh a; (C’) là ảnh của (C) qua phép vị tự tâm A tỉ số k = -2. Đường tròn (C’) có bán kính R’ bằng? + Cho đa giác đều 20 đỉnh. Lấy ngẫu nhiên 3 đỉnh từ 20 đỉnh trên. Tính xác suất để 3 đỉnh đó là 3 đỉnh của 1 tam giác vuông không cân.