Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Ôn luyện Toán 9 theo chủ đề (tập 2)

Tài liệu gồm 199 trang, bao gồm tóm tắt lý thuyết, bài tập và các dạng toán, giúp học sinh lớp 9 ôn luyện Toán 9 theo chủ đề (tập 2). Mục lục : CHỦ ĐỀ 1. HỆ HAI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN 1. + Vấn đề 1. Phương trình bậc nhất hai ẩn 1. + Vấn đề 2. Hệ hai phương trình bậc nhất hai ẩn 5. + Vấn đề 3. Giải hệ phương trình bằng phương pháp thế 9. + Vấn đề 4. Giải hệ phương trình bằng phương pháp cộng đại số 13. + Vấn đề 5. Hệ phương trình bậc nhất hai ẩn chứa tham số 17. + Vấn đề 6. Giải bài toán bằng cách lập hệ phương trình (phần 1) 20. + Vấn đề 7. Giải bài toán bằng cách lập hệ phương trình (phần 2) 23. Ôn tập chủ đề 1 (phần 1) 26. Ôn tập chủ đề 1 (phần 2) 29. CHỦ ĐỀ 2. HÀM SỐ Y = AX2 (A KHÁC 0). PHƯƠNG TRÌNH BẬC HAI MỘT ẨN 32. + Vấn đề 1. Hàm số y = ax2 (a khác 0) và đồ thị (phần 1) 32. + Vấn đề 2. Hàm số y = ax2 (a khác 0) và đồ thị (phần 2) 36. + Vấn đề 3. Công thức nghiệm 38. + Vấn đề 4. Công thức nghiệm 42. + Vấn đề 5. Hệ thức Vi-ét và ứng dụng (phần 1) 46. + Vấn đề 6. Hệ thức Vi-ét và ứng dụng (phần 2) 50. + Vấn đề 7. Phương trình quy về phương trình bậc hai 54. + Vấn đề 8. Giải bài toán bằng cách lập phương trình (phần 1) 58. + Vấn đề 9. Giải bài toán bằng cách lập phương trình (phần 2) 62. + Vấn đề 10. Bài toán về đường thẳng và parabol 66. Ôn tập chủ đề 2 69. CHỦ ĐỀ 3. GÓC VỚI ĐƯỜNG TRÒN 73. + Vấn đề 1. Góc ở tâm. Số đo cung 73. + Vấn đề 2. Liên hệ giữa cung và dây 75. + Vấn đề 3. Góc nội tiếp (phần 1) 77. + Vấn đề 4. Góc nội tiếp (phần 2) 78. + Vấn đề 5. Góc tạo bởi tia tiếp tuyến và dây (phần 1) 80. + Vấn đề 6. Góc tạo bởi tia tiếp tuyến và dây cung (phần 2) 81. + Vấn đề 7. Góc có đỉnh bên trong hay bên ngoài đường tròn (phần 1) 84. + Vấn đề 8. Góc có đỉnh bên trong hay bên ngoài đường tròn (phần 2) 85. + Vấn đề 9. Cung chứa góc 88. + Vấn đề 10. Tứ giác nội tiếp (phần 1) 90. + Vấn đề 11. Tứ giác nội tiếp (phần 2) 92. + Vấn đề 12. Độ dài đường tròn, cung tròn 94. + Vấn đề 13. Diện tích hình tròn, hình quạt tròn 98. Ôn tập theo chủ đề 3 101. CHỦ ĐỀ 4. HÌNH TRỤ, HÌNH NÓN, HÌNH CẦU 104. + Vấn đề 1. Diện tích xung quanh và thể tích của hình trụ 104. + Vấn đề 2. Diện tích xung quanh và thể tích hình nón, hình nón cụt 106. + Vấn đề 3. Diện tích và thể tích mặt cầu 108. Ôn tập chủ đề 4 111. HƯỚNG DẪN GỢI Ý ĐÁP ÁN 113. CHỦ ĐỀ 1. PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN 113. + Vấn đề 1. Phương trình bậc nhất hai ẩn 113. + Vấn đề 2. Hệ hai phương trình bậc nhất hai ẩn 116. + Vấn đề 3. Giải hệ phương trình bằng phương pháp thế 118. + Vấn đề 4. Giải hệ phương trình bằng phương pháp cộng đại số 120. + Vấn đề 5. Hệ phương trình bậc nhất 122. + Vấn đề 6. Giải bài toán bằng cách lập hệ phương trình (phần 1) 125. Ôn tập chủ đề 1 (phần 1) 128. Ôn tập chủ đề 1 (phần 2) 131. CHỦ ĐỀ 2. HÀM SỐ Y = AX2 (A KHÁC 0). PHƯƠNG TRÌNH BẬC HAI MỘT ẨN 133. + Vấn đề 2. Hàm số y = ax2 (a khác 0) và đồ thị (phần 2) 135. + Vấn đề 3. Công thức nghiệm của phương trình bậc hai (phần 1) 138. + Vấn đề 4. Công thức nghiệm của phương trình bậc hai (phần 2) 140. + Vấn đề 5. Hệ thức Vi-ét và ứng dụng (phần 1) 143. + Vấn đề 6. Hệ thức Vi-ét và ứng dụng (phần 2) 147. + Vấn đề 7. Phương trình quy về phương trình bậc hai 149. + Vấn đề 8. Giải bài toán bằng cách lập phương trình (phần 1) 151. + Vấn đề 9. Giải bài toán bằng cách lập phương trình (phần 2) 154. + Vấn đề 10. Bài toán về đường thẳng và parabol 156. Ôn tập chủ đề 2 158. CHỦ ĐỀ 3. GÓC VỚI ĐƯỜNG TRÒN 160. + Vấn đề 1. Góc ở tâm. Số đo cung 160. + Vấn đề 2. Liên hệ giữa cung và dây 161. + Vấn đề 3. Góc nội tiếp (phần 1) 163. + Vấn đề 4. Góc nội tiếp (phần 2) 165. + Vấn đề 5. Góc tạo bởi tia tiếp tuyến và dây (phần 1) 167. + Vấn đề 6. Góc tạo bởi tia tiếp tuyến và dây (phần 2) 168. + Vấn đề 7. Góc có đỉnh bên trong hay bên ngoài 170. + Vấn đề 8. Góc có đỉnh bên trong hay bên ngoài đường tròn (phần 2) 172. + Vấn đề 9. Cung chứa góc 174. + Vấn đề 10. Tứ giác nội tiếp (phần 1) 175. + Vấn đề 11. Tứ giác nội tiếp (phần 2) 177. + Vấn đề 12. Độ dài đường tròn, cung tròn 180. + Vấn đề 13. Diện tích hình tròn, hình quạt tròn 183. Ôn tập chủ đề 3 186. CHỦ ĐỀ 4. HÌNH TRỤ, HÌNH NÓN, HÌNH CÂU 191. + Vấn đề 1. Diện tích xung quanh và thể tích hình trụ 191. + Vấn đề 2. Diện tích xung quanh và thể tích của hình nón, hình nón cụt 193. + Vấn đề 3. Diện tích và thể tích của mặt cầu 194. Ôn tập chủ đề 4 196.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề hình cầu, diện tích mặt cầu và thể tích hình cầu
Tài liệu gồm 52 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề hình cầu, diện tích mặt cầu và thể tích hình cầu, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 4 bài số 3. A. TRỌNG TÂM CƠ BẢN CẦN ĐẠT I. TÓM TẮT LÝ THUYẾT 1. Hình cầu. + Khi quay nửa hình tròn tâm O, bán kính R một vòng quanh đường kính AB cố định ta thu được một hình cầu. + Nửa đường tròn trong phép quay nói trên tạo thành một mặt cầu. + Điểm O gọi là tâm, R là bán kính của hình cầu hay mặt cầu đó. 2. Cắt hình cầu bởi một mặt phẳng. + Khi cắt hình cầu bởi một mặt phẳng ta được một hình tròn. + Khi cắt mặt cầu bán kính R bởi một mặt phẳng ta được một đường tròn, trong đó: đường tròn đó có bán kính R nếu mặt phẳng đi qua tâm (gọi là đường tròn lớn). 3. Diện tích, thể tích. Cho hình cầu bán kính R: + Diện tích mặt cầu: S = 4piR^2. + Thể tích hình cầu: V = 4/3piR^3. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Tính diện tích mặt cầu, thể tích hình cầu và các đại lượng liên quan. Phương pháp giải: Áp dụng các công thức S = 4piR^2 và V = 4/3piR^3 để tính diện tích mặt cầu, thể tích hình cầu và các đại lượng liên quan. Dạng 2. Bài tập tổng hợp. Phương pháp giải: Vận dụng các công thức trên và các kiến thức đã học để tính các đại lượng chưa biết rồi từ đó tính diện tích mặt cầu, thể tích hình cầu. III. BÀI TẬP CƠ BẢN VỀ NHÀ B. NÂNG CAO VÀ PHÁT TRIỂN TƯ DUY C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. TỰ LUYỆN CƠ BẢN VÀ NÂNG CAO
Chuyên đề hình trụ, diện tích xung quanh và thể tích của hình trụ
Tài liệu gồm 26 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề hình trụ, diện tích xung quanh và thể tích của hình trụ, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 3 bài số 1. A. TRỌNG TÂM CƠ BẢN CẦN ĐẠT I. TÓM TẮT LÝ THUYẾT Cho hình trụ có bán kính đáy R và chiều cao h. Khi đó: 1. Diện tích xung quanh: Sxq = 2piRh. 2. Diện tích đáy: S = piR^2. 3. Diện tích toàn phần: Stp = 2piRh + 2piR^2. 4. Thể tích: V = piR^2h. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Tính bán kính đáy, chiều cao, diện tích xung quanh, diện tích toàn phần và thể tích của hình trụ. Phương pháp giải: Vận dụng các công thức trên để tính bán kính đáy, chiều cao, diện tích đáy, diện tích xung quanh, diện tích toàn phần và thể tích của hình trụ. Dạng 2. Bài tập tổng hợp. Phương pháp giải: Vận dụng một cách linh hoạt kiến thức về hình học phẳng đã được học kết hợp các công thức và lí thuyết về hình trụ kết hợp giải bài tập. III. BÀI TẬP CƠ BẢN VỀ NHÀ B. NÂNG CAO PHÁT TRIỂN TƯ DUY C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. TỰ LUYỆN CƠ BẢN VÀ NÂNG CAO
Chuyên đề diện tích hình tròn, hình quạt tròn
Tài liệu gồm 28 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề diện tích hình tròn, hình quạt tròn, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 3 bài số 10. A. TRỌNG TÂM CƠ BẢN CẦN ĐẠT I. TÓM TẮT LÝ THUYẾT 1. Công thức diện tích hình tròn: Diện tích S của một hình tròn bán kinh R được tính theo công thức: S = pi.R^2. 2. Công thức diện tích hình quạt tròn: Diện tích hình quạt tròn bán kính E, cung n0 được tính theo công thức: S = piR^2n/360 hay S = lR/2 (l là độ dài cung n0 của hình quạt tròn). II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Tính diện tích hình tròn, hình quạt tròn và các loại lương có liên quan. Phương pháp giải: Áp dụng các công thức trên và các kiến thức đã có. Dạng 2. Bài toán tổng hợp. Phương pháp giải: Sử dụng linh hoạt các kiến thức đã học để tính góc ở tâm, bán kính đường tròn. Từ đó tính được diện tích hình tròn và diện tích hình quạt tròn. III. BÀI TẬP CƠ BẢN VỀ NHÀ B. NÂNG CAO VÀ PHÁT TRIỂN TƯ DUY C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. TỰ LUYỆN CƠ BẢN VÀ NÂNG CAO
Chuyên đề độ dài đường tròn, cung tròn
Tài liệu gồm 29 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề độ dài đường tròn, cung tròn, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 3 bài số 9. A. TRỌNG TÂM CƠ BẢN CẦN ĐẠT I. TÓM TẮT LÝ THUYẾT 1. Công thức tính độ dài đường tròn (chu vi đường tròn). Độ dài (C) của một đường tròn bán kính R được tính theo công thức: C = 2piR hoặc C = pid (với d = 2R). 2. Công thức tính độ dài cung tròn. Trên đường tròn bán kính R, độ dài l của một cung n° được tính theo công thức: l = piRn/180. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Tính độ dài đường tròn, cung tròn. Phương pháp giải: Áp dụng công thức đã nêu trong phần tóm tắt lý thuyết. Dạng 2. Một số bài toán tổng hợp. Phương pháp giải: Áp dụng công thức trên và các kiến thức đã có. III. BÀI TẬP CƠ BẢN VỀ NHÀ B. NÂNG CAO PHÁT TRIỂN TƯ DUY C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. PHIẾU BÀI TỰ LUYỆN CƠ BẢN VÀ NÂNG CAO