Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lần 1 lớp 11 môn Toán năm 2023 2024 trường THPT chuyên Hùng Vương Phú Thọ

Nội dung Đề khảo sát lần 1 lớp 11 môn Toán năm 2023 2024 trường THPT chuyên Hùng Vương Phú Thọ Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề khảo sát chất lượng lần 1 môn Toán lớp 11 năm học 2023 – 2024 trường THPT chuyên Hùng Vương, tỉnh Phú Thọ; kỳ thi được diễn ra vào ngày 29 tháng 11 năm 2023; đề thi có đáp án trắc nghiệm mã đề 111 – 112 – 113 – 114. Trích dẫn Đề khảo sát lần 1 Toán lớp 11 năm 2023 – 2024 trường chuyên Hùng Vương – Phú Thọ : + Một phân xưởng may áo vest và quần âu để chuẩn bị cho dịp cuối năm. Biết may 1 áo vest hết 2m vải và cần 20 giờ; 1 quần âu hết 1,5m vải và cần 5 giờ. Xí nghiệp được giao sử dụng không quá 900m vải và số giờ công không vượt quá 6000 giờ. Theo khảo sát thị trường, số lượng quần bán ra không nhỏ hơn số lượng áo và không vượt quá 2 lần số lượng áo. Khi xuất ra thị trường, 1 chiếc áo lãi 350 nghìn đồng, 1 chiếc quần lãi 100 nghìn đồng. Tiền lãi cao nhất phân xưởng thu được dịp cuối năm đó là (biết thị trường tiêu thụ luôn đón nhận sản phẩm của xí nghiệp). + Trong các mệnh đề sau, mệnh đề nào đúng? A. Hai đường thẳng song song khi và chỉ khi chúng ở trên cùng một mặt phẳng. B. Hai đường thẳng chéo nhau khi và chỉ khi chúng không có điểm chung. C. Hai đường thẳng không có điểm chung là hai đường thẳng song song hoặc chéo nhau. D. Khi hai đường thẳng ở trên hai mặt phẳng thì hai đường thẳng đó chéo nhau. + Các bệnh truyền nhiễm có thể lây lan rất nhanh. Giả sử có 5 người bị bệnh trong tuần đầu tiên của một đợt dịch, và mỗi người bị bệnh sẽ lây bệnh cho bốn người vào cuối tuần tiếp theo. Tính đến hết tuần thứ 10 của đợt dịch, có bao nhiêu người đã bị lây bởi căn bệnh này? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi cấp tỉnh Toán 11 năm 2021 - 2022 sở GDĐT Bình Định
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 11 THPT năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Bình Định; kỳ thi được diễn ra vào thứ Sáu ngày 18 tháng 03 năm 2022. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 11 năm 2021 – 2022 sở GD&ĐT Bình Định : + Rút ngẫu nhiên 8 tấm thẻ trong 20 tấm thẻ được đánh số từ 1 đến 20. Tìm xác suất để 8 tấm thẻ rút ra có 5 tấm thẻ mang số lẻ, 3 tấm thẻ mang số chẵn, trong đó có đúng 3 tầm thẻ mang số chia hết cho 3. + Trong mặt phẳng Oxy, cho tam giác ABC cân tại A(-1;3). Gọi D là một điểm trên cạnh AB sao cho AB = 3AD và H là hình chiếu vuông góc của B trên CD. Điểm M là trung điểm đoạn HC. Xác định tọa độ điểm C biết đỉnh B nằm trên đường thẳng x + y + 7 = 0. + Cho hình thoi ABCD có BAD = 60° và AB = 2a. Gọi H là trung điểm AB, trên đường thẳng d vuông góc với mặt phẳng (ABCD) tại H lấy điểm S thay đổi khác H. Tính SH khi góc giữa SC và mặt phẳng (SAD) có số đo lớn nhất.
Đề thi học sinh giỏi tỉnh Toán 11 năm 2021 - 2022 sở GDĐT Hà Tĩnh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 11 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Hà Tĩnh; kỳ thi được diễn ra vào ngày 15 tháng 03 năm 2022. Trích dẫn đề thi học sinh giỏi tỉnh Toán 11 năm 2021 – 2022 sở GD&ĐT Hà Tĩnh : + Gọi E là tập các số tự nhiên chẵn có bốn chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ tập E. Tính xác suất để chọn được số có mặt đồng thời hai chữ số 2 và 3. + Cho các số thực không âm x, y thỏa mãn x2 + y2 + xy + 2 = 3(x + y). Tìm giá trị lớn nhất, nhỏ nhất của biểu thức P = (3x + 2y + 1)/(x + y + 6). + Cho dãy số {un} xác định bởi. Chứng minh rằng dãy có giới hạn hữu hạn và tìm giới hạn đó.
Đề thi học sinh giỏi Toán 11 năm 2020 - 2021 trường THPT Đông Hà - Quảng Trị
Đề thi học sinh giỏi Toán 11 năm 2020 – 2021 trường THPT Đông Hà – Quảng Trị gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 180 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 15 tháng 04 năm 2021. Trích dẫn đề thi học sinh giỏi Toán 11 năm 2020 – 2021 trường THPT Đông Hà – Quảng Trị : + Một trường có 50 học sinh giỏi, trong đó có 4 cặp anh em sinh đôi. Cần chọn ra 3 học sinh trong số 50 học sinh để tham gia trại hè. Tính xác suất để 3 em được chọn không có cặp anh em sinh đôi. + Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB a AD a SA ABCD và SA a, M là trung điểm của CD. a) Tính góc giữa SM và SAB. b) Tính theo a khoảng cách từ A đến SBM. + Cho M N P lần lượt là trung điểm của ba cạnh BC CA AB của ABC. Gọi H G O lần lượt là trực tâm, trọng tâm, tâm đường tròn ngoại tiếp ABC, I là tâm đường tròn ngoại tiếp MNP. Chứng minh H G O I thẳng hàng.
Đề thi HSG Toán 11 năm 2020 - 2021 trường THPT Lưu Hoàng - Hà Nội
Đề thi HSG Toán 11 năm 2020 – 2021 trường THPT Lưu Hoàng – Hà Nội gồm 01 trang với 05 câu tự luận, thời gian làm bài 120 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG Toán 11 năm 2020 – 2021 trường THPT Lưu Hoàng – Hà Nội : + Một người tham gia chương trình bảo hiểm An sinh xã hội của công ty Bảo Việt với thể lệ như sau: Cứ đến tháng 9 hàng năm người đó đóng vào công ty là 12 triệu đồng với lãi suất hàng năm không đổi là 6% / năm. Hỏi sau đúng 18 năm kể từ ngày đóng, người đó thu về được tất cả bao nhiêu triệu đồng (kết quả làm tròn đến hai chữ số phần thập phân). + Cho đa giác đều 18 cạnh. Nối tất cả các đỉnh với nhau. Chọn hai tam giác trong số các tam giác vuông tạo thành từ 3 đỉnh trong 18 đỉnh. Tính xác suất để chọn được hai tam giác có cùng chu vi. + Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. Đường thẳng SA vuông góc với mặt đáy, góc giữa SB và mặt đáy bằng 60. Gọi N là trung điểm của BC. a) Tính cosin của góc giữa hai đường thẳng SD và AN. b) Gọi H, K là hai điểm lần lượt thuộc các đường thẳng SB và DN sao cho HK SB HK DN. Tính độ dài đoạn HK theo a.