Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Ứng dụng tích phân trong bài toán diện tích hình phẳng với dữ kiện toán thực tế

Tài liệu gồm 24 trang, được biên soạn bởi nhóm tác giả Toán Học Bắc Trung Nam, hướng dẫn giải các bài toán ứng dụng tích phân trong bài toán diện tích hình phẳng với dữ kiện toán thực tế, đây là dạng toán vận dụng cao (VDC) thường gặp trong chương trình Giải tích 12 chương 3: Nguyên hàm, tích phân và ứng dụng; các bài toán trắc nghiệm trong tài liệu đều có đáp án và lời giải chi tiết. A. KIẾN THỨC CƠ BẢN B. BÀI TẬP 1. NHỮNG BÀI TOÁN THỰC TẾ SỬ DỤNG ĐỒ THỊ HÀM PARABOL. Bước 1. Chọn hệ trục tọa độ, xác định parabol. Bước 2. Tính diện tích hình phẳng giới hạn đồ thị hàm số y f x và các đường được cho trong bài toán. Bước 3. Tùy theo thực tế mỗi bài, tính diện tích theo yêu cầu. Chú ý: Mấu chốt của vấn đề tính diện tích parabol nằm ở khâu chọn hệ trục tọa độ phù hợp. Nên chọn hệ trục sao cho đỉnh parabol luôn nằm trùng với gốc O hoặc nằm trên trục Oy. Khi đó hàm số parabol luôn có dạng 2 y ax b. DẠNG 1: CÁC BÀI TOÁN TÍNH DIỆN TÍCH PARABOL ĐƠN THUẦN. DẠNG 2: CÁC BÀI TOÁN TÍNH DIỆN TÍCH XÁC ĐỊNH BỞI HAI HÀM SỐ. 2. NHỮNG BÀI TOÁN THỰC TẾ SỬ DỤNG ĐỒ THỊ HÀM ELIP. Bước 1. Chọn hệ trục tọa độ, xác định Elip. Bước 2. Tính diện tích hình phẳng giới hạn đồ thị hàm số f x và các đường được cho trong bài toán. Bước 3. Tùy theo thực tế mỗi bài, tính diện tích theo yêu cầu. Chú ý Mấu chốt của vấn đề tính diện tích Elip nằm ở khâu chọn hệ trục tọa độ phù hợp. Nên chọn hệ trục sao cho tâm Elip luôn nằm trùng với gốc O. Khi đó hàm số elip luôn có dạng 2 2 2 2 1. 3. NHỮNG BÀI TOÁN THỰC TẾ SỬ DỤNG ĐƯỜNG TRÒN. Bước 1. Xác định Phương trình của đường tròn 2 2 2 x a y b R. Diện tích toàn phần của đường tròn: 2 S R. Bước 2. Trọn hệ trục tọa độ để đặt đường tròn và phác họa phần mặt phẳng cần tính diện tích được giới hạn bởi đồ thị hàm số y f x và đường tròn. Bước 3. Ta sử dụng công thức tính diện tích d v u f x g x x để tính diện tích phần cần tính. Bước 4. Tùy thuộc vào câu hỏi để kết luận và đưa ra kết quả bài toán.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề trắc nghiệm phương pháp đổi biến tìm nguyên hàm
Tài liệu gồm 22 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề phương pháp đổi biến tìm nguyên hàm, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. DẠNG 1. ĐỔI BIẾN SỐ HÀM SỐ VÔ TỈ (Đặt t = hàm theo biến x). + Mẫu 1: Đổi biến hàm số vô tỷ đơn giản. + Mẫu 2: Nguyên hàm dạng x f a dx. + Mẫu 3: Nguyên hàm dạng ln f x dx x. DẠNG 2. ĐỔI BIẾN SỐ HÀM VÔ TỈ (Đặt x = hàm theo biến t). + Mẫu 1: Nếu f x có chứa 2 2 a x ta đặt sin 2 2 x a tt. + Mẫu 2: Dạng 2 2 x a thì đổi biến số tan 2 2 xa t t π π. + Mẫu 3: Dạng 2 2 x a thì ta đặt sin a x t (hoặc cos a x t). + Mẫu 4: Dạng 2 2 dx x a thì ta đặt xa t tan. + Mẫu 5: Nếu f x có chứa a x a x thì đặt 2 2 cos 2 2 sin 2 cos 2 1 cos 2 cos 1 cos 2 sin dx d a t a tdt xa t ax t t ax t t. BÀI TẬP TỰ LUYỆN. LỜI GIẢI CHI TIẾT.
Chuyên đề trắc nghiệm phương pháp vi phân tìm nguyên hàm
Tài liệu gồm 10 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề phương pháp vi phân tìm nguyên hàm, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. I. Vi phân của hàm số. II. Một số công thức vi phân quan trọng. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm mở đầu về nguyên hàm
Tài liệu gồm 16 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề mở đầu về nguyên hàm, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. I. LÝ THUYẾT TRỌNG TÂM. 1. Vi phân của hàm số. 2. Nguyên hàm. a. Định nghĩa. b. Định lý. c. Tính chất của nguyên hàm. d. Bảng công thức nguyên hàm. II. CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
203 bài tập nguyên hàm - tích phân và ứng dụng trong các đề thi thử THPT 2021 môn Toán
Tài liệu gồm 126 trang, được tổng hợp bởi thầy giáo Lương Anh Nhật, tuyển tập 203 bài tập nguyên hàm – tích phân và ứng dụng trong các đề thi thử THPT 2021 môn Toán, có đáp án và lời giải chi tiết. Trích dẫn tài liệu 203 bài tập nguyên hàm – tích phân và ứng dụng trong các đề thi thử THPT 2021 môn Toán: + THPT CHUYÊN LAM SƠN – THANH HÓA NĂM 2020 – 2021 LẦN 01: Cho hàm số f(x) xác định trên R, thỏa mãn f x x 2 1 và f 3 5. Giả sử phương trình f x 999 có hai nghiệm 1 x và 2 x. Tính tổng 1 2 S x x log log. + CHUYÊN QUANG TRUNG – BÌNH PHƯỚC NĂM 2020 – 2021 LẦN 02: Cho parabol 2 1P 6 y x cắt trục hoành tại hai điểm phân biệt AB và đường thẳng d y a 0 6 a. Xét parabol P2 đi qua AB và có đỉnh thuộc đường thẳng y a. Gọi 1 S là diện tích hình phẳng giới hạn bởi P1 và d; 2S là diện tích hình phẳng giới hạn bởi P2 và trục hoành (tham khảo hình vẽ). + CHUYÊN NGUYỄN DU – ĐĂKLẮK NĂM 2020 – 2021: Cho một viên gạch men có dạng hình vuông OABC như hình vẽ. Sau khi tọa độ hóa, ta có O A B C và hai đường cong lần lượt là đồ thị hàm số 3 y x và 3 y x. Tính diện tích phần tô đậm trên viên gạch men.