Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

10 đề kiểm tra cuối học kì 1 (HK1) lớp 11 môn Toán Kết Nối Tri Thức Với Cuộc Sống có đáp án

Nội dung 10 đề kiểm tra cuối học kì 1 (HK1) lớp 11 môn Toán Kết Nối Tri Thức Với Cuộc Sống có đáp án Bản PDF Tài liệu gồm 185 trang, được biên soạn bởi thầy giáo Phan Nhật Linh, tuyển tập 10 đề kiểm tra cuối học kỳ 1 môn Toán lớp 11 bộ sách Kết Nối Tri Thức Với Cuộc Sống (viết tắt: KNTTVCS) có đáp án và lời giải chi tiết; các đề được biên soạn theo hình thức 70% trắc nghiệm khách quan kết hợp 30% tự luận (theo điểm số), trong đó phần trắc nghiệm gồm 35 câu, phần tự luận gồm 04 câu, thời gian làm bài 90 phút. Trích dẫn 10 đề kiểm tra cuối học kỳ 1 môn Toán lớp 11 Kết Nối Tri Thức Với Cuộc Sống có đáp án: + Một đôi thỏ cứ mỗi tháng đẻ được một đôi thỏ con; mỗi đôi thỏ con, khi tròn hai tháng tuổi, lại mỗi tháng đẻ ra một đôi thỏ con và quá trình sinh nở cứ thế tiếp diễn. Hỏi sau một năm sẽ có tất cả bao nhiêu đôi thỏ, nếu đầu năm có một đôi thỏ sơ sinh? Giả sử thời gian trong năm này không có con thỏ nào chết. + Cho hình chóp S.ABCD có đáy là hình thang, AB // CD và AB CD 2. Gọi O là giao điểm của AC và BD. Lấy E thuộc cạnh SA, F thuộc cạnh SC sao cho 2 3 SE SF SA SC. Gọi là mặt phẳng qua O và song song với mặt phẳng (BEF). Gọi P là giao điểm của SD. Tính tỉ số SP SD. + Trong không gian, cho các mệnh đề: 1) Hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì song song với nhau. 2) Đường thẳng và mặt phẳng không có điểm chung thì chúng song song với nhau. 3) Nếu đường thẳng a song song với đường thẳng b, đường thẳng b nằm trên mặt phẳng P thì đường thẳng a song song với mặt phẳng P. 4) Hai mặt phẳng phân biệt có một điểm chung thì chúng có một đường thẳng chung duy nhất. Số mệnh đề đúng trong các mệnh đề trên là?

Nguồn: sytu.vn

Đọc Sách

Đề học kỳ 1 Toán 11 năm 2022 - 2023 trường THPT Nguyễn Hữu Thọ - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra cuối học kỳ 1 môn Toán 11 năm học 2022 – 2023 trường THPT Nguyễn Hữu Thọ, thành phố Hồ Chí Minh; đề thi có đáp án và thang điểm. Trích dẫn Đề học kỳ 1 Toán 11 năm 2022 – 2023 trường THPT Nguyễn Hữu Thọ – TP HCM : + Một hộp chứa 14 quả cầu khác nhau gồm 3 quả cầu màu đỏ, 5 quả cầu màu xanh và 6 quả cầu màu vàng. Chọn ngẫu nhiên đồng thời 4 quả cầu. Tính xác suất để chọn được 4 quả cầu đủ 3 màu. + Cho hình chóp S.ABCD, có đáy ABCD là hình bình hành tâm O. Gọi M, N, P lần lượt là trung điểm của BC, CD, SD. a. Tìm giao tuyến của hai mặt phẳng (SAD) và (SBC). b. Chứng minh MN // (SBD). c. Tìm giao điểm I của BP với mặt phẳng (SAC). d. Mặt phẳng (α) qua M song song với CD và SB. Tìm thiết diện của mp(α) và hình chóp. + Đề thi môn Toán THPT Quốc Gia gồm 50 câu hỏi trắc nghiệm khách quan, mỗi câu hỏi có 4 phương án trả lời trong đó chỉ có 1 phương án đúng. Mỗi câu trả lời đúng học sinh được 0,2 điểm, mỗi câu trả lời sai 0 điểm. Bạn Nam trả lời đúng 30 câu và chọn ngẫu nhiên 20 câu. Tính xác suất để bạn Nam được 9 điểm.
Đề cuối kỳ 1 Toán 11 năm 2022 - 2023 trường THPT Tây Thạnh - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra đánh giá cuối học kỳ 1 môn Toán 11 năm học 2022 – 2023 trường THPT Tây Thạnh, thành phố Hồ Chí Minh; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề cuối kỳ 1 Toán 11 năm 2022 – 2023 trường THPT Tây Thạnh – TP HCM : + Có bao nhiêu số tự nhiên có 4 chữ số khác nhau biết chữ số hàng nghìn là số chẵn và chữ số hàng đơn vị là số lẻ? + Cần sắp xếp thứ tự 8 tiết mục văn nghệ gồm 4 tiết mục của lớp 12, 3 tiết mục của lớp 11 và 1 tiết mục của lớp 10 cho buổi biểu diễn văn nghệ của trường. Hỏi ban tổ chức có bao nhiêu cách sắp xếp khác nhau sao cho tiết mục của lớp 10 chỉ biểu diễn liền kề với tiết mục của lớp 11? + Có hai lớp 11A1 và 11A2 có sĩ số lần lượt là 45 và 50 học sinh. Số học sinh giỏi Văn và số học sinh giỏi Toán của mỗi lớp được cho trong bảng sau: Lớp Giỏi 11A1 11A2 Văn 25 25 Toán 30 30 Văn và Toán 20 15. Có một đoàn học sinh từ tỉnh H đến giao lưu với học sinh của trường. Hỏi nhà trường sẽ sắp xếp đoàn vào lớp nào để khả năng gặp được một học sinh giỏi ít nhất một môn Văn hoặc Toán là cao nhất? Giải thích.
Đề học kỳ 1 Toán 11 năm 2022 - 2023 trường THPT Thăng Long - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra cuối học kỳ 1 môn Toán 11 năm học 2022 – 2023 trường THPT Thăng Long, thành phố Hồ Chí Minh; đề thi có đáp án trắc nghiệm mã đề 101 – 102 – 103 – 104. Trích dẫn Đề học kỳ 1 Toán 11 năm 2022 – 2023 trường THPT Thăng Long – TP HCM : + Một nhóm gồm 7 học sinh khối 12, 6 học sinh khối 11 và 5 học sinh khối 10. Có bao nhiêu cách chọn ra 6 học sinh sao cho có đủ 3 khối và số học sinh khối 12 luôn nhiều hơn học sinh khối 10. + Có 6 quả cầu đỏ được đánh số từ 1 đến 6, 7 quả cầu xanh được đánh số từ 1 đến 7 và 5 quả cầu vàng được đánh số từ 1 đến 5. Lấy lần lượt mỗi màu một quả cầu. Có bao nhiêu cách để các quả cầu được lấy ra đều có số lẻ? + Cho tứ diện ABCD M N P lần lượt là trung điểm của AB BC CD. Thiết diện của tứ diên cắt bởi mặt phẳng MNP là: A. Hình bình hành B. Hình thang cân C. Hình chữ nhật D. Hình thoi.
Đề học kỳ 1 Toán 11 năm 2022 - 2023 trường TH Thực hành Sài Gòn - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra cuối học kỳ 1 môn Toán 11 năm học 2022 – 2023 trường Trung học Thực hành Sài Gòn, thành phố Hồ Chí Minh; đề thi có đáp án và thang điểm. Trích dẫn Đề học kỳ 1 Toán 11 năm 2022 – 2023 trường TH Thực hành Sài Gòn – TP HCM : + Từ các chữ số 1; 2; 3; 4; 5; 6 có thể lập được bao nhiêu số tự nhiên có 4 chữ số khác nhau sao cho chữ số hàng đơn vị gấp 5 lần chữ số hàng nghìn? + Có ba xạ thủ thi bắn vào mục tiêu, mỗi người bắn một viên đạn. Xác suất bắn trúng mục tiêu của xạ thủ thứ nhất, thứ hai và thứ ba lần lượt là 0,6; 0,7 và 0,8. Tính xác suất để có ít nhất một xạ thủ bắn trúng mục tiêu, biết rằng ba xạ thủ thi đấu độc lập với nhau. + Trong mặt phẳng tọa độ Oxy, ta lấy 2 điểm phân biệt thuộc góc phần tư thứ nhất; tương tự, ta lấy 3; 4; 5 điểm phân biệt lần lượt thuộc các góc phần tư thứ hai, thứ ba và thứ tư (các điểm không nằm trên các trục tọa độ). Với 14 điểm trên, ta chọn hai điểm bất kỳ. Tính xác suất để đoạn thẳng nối hai điểm đó cắt cả hai trục tọa độ.