Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi Toán 12 năm 2019 - 2020 sở GDĐT Quảng Trị

Ngày 02 tháng 10 năm 2019, sở Giáo dục và Đào tạo tỉnh Quảng Trị tổ chức kỳ thi chọn học sinh giỏi văn hóa lớp 12 THPT môn Toán năm học 2019 – 2020. Đề thi chọn học sinh giỏi Toán 12 năm 2019 – 2020 sở GD&ĐT Quảng Trị gồm 05 bài toán, thời gian làm bài 180 phút, đề thi gồm có 01 trang. Trích dẫn đề thi chọn học sinh giỏi Toán 12 năm 2019 – 2020 sở GD&ĐT Quảng Trị : + Có hai dãy ghế đối diện nhau, mỗi dãy có bốn ghế. Xếp ngẫu nhiên 8 học sinh, gồm 4 nam và 4 nữ, ngồi vào hai dãy ghế đó sao cho mỗi ghế có đúng một học sinh ngồi. Tính xác suất để mỗi học sinh nam đều ngồi đối diện với một học sinh nữ. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình thoi với góc ABC = 60 độ, BC = a. Biết tam giác SAB đều, tam giác SCD vuông tại C và nằm trong mặt phẳng hợp với mặt phẳng đáy một góc 60 độ. Tính thể tích khối chóp S.ABCD và khoảng cách từ B đến mặt phẳng (SAD) theo a. + Cho tam giác nhọn ABC (AB < AC) có các đường cao AD, BE và CF đồng quy tại H. Gọi G là giao điểm BH và DF, L là giao điểm của BC và EF, O là tâm đường tròn ngoại tiếp tam giác BCH, K là trung điểm của BC. Chứng minh H là trực tâm tam giác AKL và LG vuông góc AO.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi cấp tỉnh Toán 12 năm 2023 - 2024 sở GDĐT Bình Phước
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bình Phước; kỳ thi được diễn ra vào ngày 04 tháng 11 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 12 năm 2023 – 2024 sở GD&ĐT Bình Phước : + Gọi S là tập hợp các số tự nhiên có 5 chữ số đôi một khác nhau và các chữ số này được lấy từ các chữ số 1, 2, 3, 4, 5, 6, 7, 8, 9. Chọn ngẫu nhiên một số từ tập S, tính xác suất để số được chọn là số chẵn trong đó có đúng hai chữ số lẻ và hai chữ số lẻ này không đứng cạnh nhau. + Cho hình chóp tứ giác đều S.ABCD có O là giao điểm của AC và BD. Biết SO a 2 góc giữa đường thẳng SA và mặt phẳng (ABCD) bằng 0 45. a) Tính thể tích khối chóp S.ABCD theo a. b) Gọi K là điểm di động trong mặt phẳng (ABCD). Tìm SAK để biểu thức SA AK T SK đạt giá trị lớn nhất. + Cho hình trụ có đường kính đáy bằng 4 5. Một mặt phẳng không vuông góc với đáy và cắt hai đáy theo hai dây cung song song MN M N thoả mãn MN M N 8 4. Biết rằng tứ giác MNN M có diện tích bằng 54. Tính thể tích khối trụ đã cho.
Đề học sinh giỏi Toán 12 GDTX cấp tỉnh năm 2023 - 2024 sở GDĐT Hải Dương
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán 12 GDTX cấp tỉnh năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Hải Dương; kỳ thi được diễn ra vào thứ Tư ngày 25 tháng 10 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 12 GDTX cấp tỉnh năm 2023 – 2024 sở GD&ĐT Hải Dương : + Lấy ngẫu nhiên 3 viên bi từ một hộp có 3 viên bi vàng, 4 viên bi đỏ, 5 viên bi xanh, 6 viên bi trắng. Tính xác suất để 3 viên bi lấy ra có ít nhất 2 màu. Trong mặt phẳng toạ độ Oxy cho điểm A(1;3). Viết phương trình đường tròn tâm A và đi qua B(-1;4). + Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B; mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Biết AB a BC a 3. a) Tính thể tích khối chóp S.ABC theo a. b) Gọi M là trung điểm AC. Tính khoảng cách từ M đến mặt phẳng (SBC). + Một người đàn ông muốn xây bể bơi cho trẻ em có thể tích 3 18m và thiết kế bể là hình hộp chữ nhật có chiều dài gấp ba lần chiều rộng. Tính độ sâu của bể để diện tích gạch lát đáy và thành bể nhỏ nhất.
Đề học sinh giỏi Toán 12 THPT cấp tỉnh năm 2023 - 2024 sở GDĐT Hải Dương
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán 12 THPT cấp tỉnh năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Hải Dương; kỳ thi được diễn ra vào thứ Tư ngày 25 tháng 10 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 12 THPT cấp tỉnh năm 2023 – 2024 sở GD&ĐT Hải Dương : + Gọi S là tập hợp các số tự nhiên có năm chữ số đôi một khác nhau được lập từ các chữ số 0, 1, 2, 3, 4, 5, 7, 8, 9. Chọn ngẫu nhiên một số thuộc tập S. Tính xác suất để số được chọn chia hết cho 5. + Trong mặt phẳng với hệ tọa độ Oxy, cho hình vuông ABCD và đường thẳng ∆ có phương trình x y 2 60. Điểm C thuộc đường thẳng ∆, điểm M (6; 4) thuộc cạnh BC. Đường tròn đường kính AM cắt đoạn BD tại điểm N (1; 5). Tìm tọa độ các đỉnh của hình vuông ABCD, biết rằng đỉnh C có tọa độ nguyên và đỉnh A có hoành độ nhỏ hơn 1. + Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A và SC a 2 5. Hình chiếu của S trên mặt phẳng (ABC) là trung điểm M của AB. Góc giữa đường thẳng SC và mặt phẳng (ABC) bằng 0 60. Tính theo a khoảng cách từ B đến mặt phẳng (SAC).
Đề học sinh giỏi cấp tỉnh Toán 12 năm 2023 - 2024 sở GDĐT Bình Định
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bình Định; kỳ thi được diễn ra vào thứ Bảy ngày 22 tháng 10 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 12 năm 2023 – 2024 sở GD&ĐT Bình Định : + Tìm tất cả các tam giác có độ dài ba cạnh là ba số hạng đầu của một cấp số cộng có công sai là d (d nguyên, khác 0) và có bán kính đường tròn nội tiếp bằng 3. + Cho đa giác đều n đỉnh (n ≥ 8). Biết rằng có 25 tứ giác có 4 cạnh là các đường chéo của đa giác. Hãy tìm n. + Cho đường tròn (O) ngoại tiếp tam giác ABC. Gọi BI, CJ lần lượt là các đường phân giác trong của góc B, C. Các tia JI, IJ lần lượt cắt đường tròn (O) tại D, E. Gọi M, N, P lần lượt là chân đường vuông góc của D lên các đường thẳng AB, AC, BC. Chứng minh rằng: a) NM = NP khi và chỉ khi DI là phân giác của góc ADC. b) BE CD AE AD BD.