Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 11 năm 2023 - 2024 trường chuyên Lê Hồng Phong - Nam Định

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp trường môn Toán 11 năm học 2023 – 2024 trường THPT chuyên Lê Hồng Phong, tỉnh Nam Định; đề thi gồm 40 câu trắc nghiệm và 06 câu tự luận, thời gian làm bài 60 + 75 phút, có đáp án và hướng dẫn chấm điểm mã đề 498 499 500 501. Trích dẫn Đề học sinh giỏi Toán 11 năm 2023 – 2024 trường chuyên Lê Hồng Phong – Nam Định : + Một rạp hát có 20 hàng ghế xếp theo hình quạt. Hàng thứ nhất có 17 ghế, hàng thứ 2 có 20 ghế, hàng thứ ba có 23 ghế, … cứ tiếp tục cho đến hàng cuối cùng (hình vẽ). Trong một buổi biểu diễn ca nhạc, rạp hát đó đã bán được vừa hết số vé tương ứng với số ghế trong rạp hát. Tính số tiền thu được từ việc bán vé, biết rằng mỗi vé xem có giá 200000 đồng? + Đường Vôn Kốc là một hình có tính chất toàn bộ hình “đồng dạng” với từng bộ phận của nó. Nó được xây dựng bằng phương pháp lặp như sau: Từ đoạn thẳng AB ban đầu, ta chia đoạn thẳng đó thành 3 phần bằng nhau AC CD DB, dựng tam giác đều CED rồi bỏ đi khoảng CD. Ta được đường gấp khúc ACEDB kí hiệu là K1. Lặp lại quy tắc đó cho các đoạn AC, CE, ED, DB ta được đường gấp khúc K2 (hình vẽ). Tiếp tục lặp lại quy tắc đó cho từng đoạn của K2 ta được đường gấp khúc K3 …. Lặp lại mãi quá trình đó ta được một đường gọi là đường Vôn Kốc. Giả sử đoạn thẳng ban đầu có độ dài a, tính độ dài đường gấp khúc K6. + Cho một đa giác lồi có 60 đỉnh. Chọn ngẫu nhiên 4 đỉnh của đa giác đó. Tính xác suất sao cho 4 đỉnh được chọn tạo thành một tứ giác có bốn cạnh là bốn đường chéo của của đa giác đó?

Nguồn: toanmath.com

Đọc Sách

Đề giao lưu HSG tỉnh Toán 11 năm 2019 - 2020 trường Bá Thước - Thanh Hóa
Ngày 28 tháng 12 năm 2019, trường THPT Bá Thước, tỉnh Thanh Hóa tổ chức kỳ thi giao lưu học sinh giỏi cấp tỉnh môn Toán lớp 11 năm học 2019 – 2020, đây là bước chuẩn bị trước khi các em học sinh khối 11 bước vào kỳ thi chọn học sinh giỏi Toán cấp tỉnh do sở Giáo dục và Đào tạo Thanh Hóa tổ chức. Đề giao lưu HSG tỉnh Toán 11 năm 2019 – 2020 trường Bá Thước – Thanh Hóa được biên soạn theo dạng đề tự luận với 05 bài toán, thời gian học sinh làm bài thi là 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề giao lưu HSG tỉnh Toán 11 năm 2019 – 2020 trường Bá Thước – Thanh Hóa : + Cho hình chóp S.ABCD có đáy là hình thoi cạnh 3a, SA = SD = 3a, SB = SC = 3a√3. Gọi M, N lần lượt là trung điểm của các cạnh SA và SD, P là điểm thuộc cạnh AB sao cho AP = 2a. Tính diện tích thiết diện của hình chóp khi cắt bởi mặt phẳng (MNP). [ads] + Cho tứ diện ABCD, G là trọng tâm tam giác BCD và M là điểm di động bên trong tam giác BCD sao cho khi M khác G thì MG không song song với CD. Đường thẳng qua M và song song với GA cắt các mặt phẳng (ABC), (ACD), (ABD) lần lượt tại P, Q, R. Tìm giá trị lớn nhất của tích MP.MQ.MR. + Một hộp đựng 50 chiếc thẻ được đánh số từ 1 đến 50. Chọn ngẫu nhiên từ hộp hai thẻ. Tính xác suất để hiệu bình phương số ghi trên hai thẻ là số chia hết cho 3.
Đề khảo sát HSG Toán 11 lần 1 năm 2019 - 2020 trường Hậu Lộc 4 - Thanh Hóa
Vừa qua, trường THPT Hậu Lộc 4, tỉnh Thanh Hóa đã tổ chức kỳ thi khảo sát chất lượng đội tuyển học sinh giỏi Toán 11 THPT lần thứ nhất năm học 2019 – 2020. Đề khảo sát HSG Toán 11 lần 1 năm 2019 – 2020 trường Hậu Lộc 4 – Thanh Hóa gồm có 05 bài toán dạng tự luận, thời gian làm bài 180 phút, đề thi gồm 01 trang, có lời giải chi tiết và thang chấm điểm. Trích dẫn đề khảo sát HSG Toán 11 lần 1 năm 2019 – 2020 trường Hậu Lộc 4 – Thanh Hóa : + Cho hình chóp S.ABCD có đáy là hình thang, đáy lớn BC = 2a, AD = a, AB = b. Mặt bên (SAD) là tam giác đều. Mặt phẳng (α) qua điểm M trên cạnh AB và song song với các cạnh SA, BC. (α) cắt CD, SC, SB lần lượt tại N, P, Q. Đặt x = AM (0 < x < b). Tính giá trị lớn nhất của diện tích thiết diện tạo bởi (α) và hình chóp S.ABCD. [ads] + Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC cân tại A(-1;3). Gọi D là một điểm trên cạnh AB sao cho AB = 3AD và H là hình chiếu vuông góc của B trên CD. Điểm M(1/2;-3/2) là trung điểm đoạn HC. Xác định tọa độ điểm C biết điểm B nằm trên đường thẳng x + y + 7 = 0. + Trong mặt phẳng với trục toạ độ Oxy cho hình thang cân ABCD (AB // CD). Gọi H, I lần lượt là hình chiếu vuông góc của B trên các đường thẳng AC, CD. Giả sử M, N lần lượt là trung điểm của AD, HI. Viết phương trình đường thẳng AB biết M(1;-2), N(3;4) và đỉnh B nằm trên đường thẳng x + y – 9 = 0, cosABM = 2/√5.
Đề Olympic Toán 11 năm 2019 cụm trường THPT Hà Đông Hoài Đức Hà Nội
giới thiệu đến bạn đọc đề thi Olympic Toán 11 năm học 2018 – 2019 cụm trường THPT Hà Đông – Hoài Đức – Hà Nội, đề gồm 01 trang với 05 bài toán dạng tự luận, thang điểm bài thi là 20 điểm, học sinh có 150 phút để làm bài thi. Trích dẫn đề Olympic Toán 11 năm 2019 cụm trường THPT Hà Đông – Hoài Đức – Hà Nội : + Trong một hộp kín đựng 100 tấm thẻ như nhau được đánh số từ 1 đến 100. Lấy ngẫu nhiên ba tấm thẻ trong hộp. Tính xác suất để lấy được ba tấm thẻ mà ba số ghi trên ba tấm thẻ đó lập thành một cấp số cộng. [ads] + Cho hình hộp ABCD.A’B’C’D’ có tất cả các cạnh bằng nhau. Điểm M di động trên cạnh AB, điểm N di động trên cạnh A’D’ sao cho A’N = 2AM. Gọi (a) là mặt phẳng chứa MN và song song với AC. Dựng thiết diện của hình hộp bởi (a) và chứng minh rằng (a) luôn chứa một đường thẳng cố định. + Cho tứ diện ABCD. Chứng minh rằng: (AB + CD)^2 + (AD + BC)^2 > (AC + BD)?.
Đề học sinh giỏi Toán 11 cấp trường năm 2018 - 2019 trường Lưu Hoàng - Hà Nội
Đề học sinh giỏi Toán 11 cấp trường năm học 2018 – 2019 trường THPT Lưu Hoàng – Hà Nội có đáp án và lời giải chi tiết. Trích dẫn đề học sinh giỏi Toán 11 cấp trường năm 2018 – 2019 trường Lưu Hoàng – Hà Nội : + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh SA = a và vuông góc với mặt phẳng (ABCD). a) Chứng minh rằng các mặt bên của hình chóp là những tam giác vuông. b) M là điểm di động trên đoạn BC và BM = x, K là hình chiếu của S trên DM. Tính độ dài đoạn SK theo a và x. Tính giá trị nhỏ nhất của đoạn SK. + Một người bỏ ngẫu nhiên 4 lá thư và 4 chiếc phong bì thư đã để sẵn địa chỉ. Tính xác suất để có ít nhất một lá thư bỏ đúng địa chỉ. + Trong mặt phẳng Oxy, cho đường tròn (C1), đường tròn (C2). a) Tìm giao điểm của hai đường tròn (C1) và (C2). b) Gọi giao điểm có tung độ dương của (C1) và (C2) là A viết phương trình đường thẳng đi qua A cắt (C1) và (C2) theo hai dây cung có độ dài bằng nhau.