Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 11 năm 2023 - 2024 trường chuyên Lê Hồng Phong - Nam Định

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp trường môn Toán 11 năm học 2023 – 2024 trường THPT chuyên Lê Hồng Phong, tỉnh Nam Định; đề thi gồm 40 câu trắc nghiệm và 06 câu tự luận, thời gian làm bài 60 + 75 phút, có đáp án và hướng dẫn chấm điểm mã đề 498 499 500 501. Trích dẫn Đề học sinh giỏi Toán 11 năm 2023 – 2024 trường chuyên Lê Hồng Phong – Nam Định : + Một rạp hát có 20 hàng ghế xếp theo hình quạt. Hàng thứ nhất có 17 ghế, hàng thứ 2 có 20 ghế, hàng thứ ba có 23 ghế, … cứ tiếp tục cho đến hàng cuối cùng (hình vẽ). Trong một buổi biểu diễn ca nhạc, rạp hát đó đã bán được vừa hết số vé tương ứng với số ghế trong rạp hát. Tính số tiền thu được từ việc bán vé, biết rằng mỗi vé xem có giá 200000 đồng? + Đường Vôn Kốc là một hình có tính chất toàn bộ hình “đồng dạng” với từng bộ phận của nó. Nó được xây dựng bằng phương pháp lặp như sau: Từ đoạn thẳng AB ban đầu, ta chia đoạn thẳng đó thành 3 phần bằng nhau AC CD DB, dựng tam giác đều CED rồi bỏ đi khoảng CD. Ta được đường gấp khúc ACEDB kí hiệu là K1. Lặp lại quy tắc đó cho các đoạn AC, CE, ED, DB ta được đường gấp khúc K2 (hình vẽ). Tiếp tục lặp lại quy tắc đó cho từng đoạn của K2 ta được đường gấp khúc K3 …. Lặp lại mãi quá trình đó ta được một đường gọi là đường Vôn Kốc. Giả sử đoạn thẳng ban đầu có độ dài a, tính độ dài đường gấp khúc K6. + Cho một đa giác lồi có 60 đỉnh. Chọn ngẫu nhiên 4 đỉnh của đa giác đó. Tính xác suất sao cho 4 đỉnh được chọn tạo thành một tứ giác có bốn cạnh là bốn đường chéo của của đa giác đó?

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi tỉnh Toán 11 năm 2021 - 2022 sở GDĐT Hà Tĩnh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 11 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Hà Tĩnh; kỳ thi được diễn ra vào ngày 15 tháng 03 năm 2022. Trích dẫn đề thi học sinh giỏi tỉnh Toán 11 năm 2021 – 2022 sở GD&ĐT Hà Tĩnh : + Gọi E là tập các số tự nhiên chẵn có bốn chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ tập E. Tính xác suất để chọn được số có mặt đồng thời hai chữ số 2 và 3. + Cho các số thực không âm x, y thỏa mãn x2 + y2 + xy + 2 = 3(x + y). Tìm giá trị lớn nhất, nhỏ nhất của biểu thức P = (3x + 2y + 1)/(x + y + 6). + Cho dãy số {un} xác định bởi. Chứng minh rằng dãy có giới hạn hữu hạn và tìm giới hạn đó.
Đề thi học sinh giỏi Toán 11 năm 2020 - 2021 trường THPT Đông Hà - Quảng Trị
Đề thi học sinh giỏi Toán 11 năm 2020 – 2021 trường THPT Đông Hà – Quảng Trị gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 180 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 15 tháng 04 năm 2021. Trích dẫn đề thi học sinh giỏi Toán 11 năm 2020 – 2021 trường THPT Đông Hà – Quảng Trị : + Một trường có 50 học sinh giỏi, trong đó có 4 cặp anh em sinh đôi. Cần chọn ra 3 học sinh trong số 50 học sinh để tham gia trại hè. Tính xác suất để 3 em được chọn không có cặp anh em sinh đôi. + Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB a AD a SA ABCD và SA a, M là trung điểm của CD. a) Tính góc giữa SM và SAB. b) Tính theo a khoảng cách từ A đến SBM. + Cho M N P lần lượt là trung điểm của ba cạnh BC CA AB của ABC. Gọi H G O lần lượt là trực tâm, trọng tâm, tâm đường tròn ngoại tiếp ABC, I là tâm đường tròn ngoại tiếp MNP. Chứng minh H G O I thẳng hàng.
Đề thi HSG Toán 11 năm 2020 - 2021 trường THPT Lưu Hoàng - Hà Nội
Đề thi HSG Toán 11 năm 2020 – 2021 trường THPT Lưu Hoàng – Hà Nội gồm 01 trang với 05 câu tự luận, thời gian làm bài 120 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG Toán 11 năm 2020 – 2021 trường THPT Lưu Hoàng – Hà Nội : + Một người tham gia chương trình bảo hiểm An sinh xã hội của công ty Bảo Việt với thể lệ như sau: Cứ đến tháng 9 hàng năm người đó đóng vào công ty là 12 triệu đồng với lãi suất hàng năm không đổi là 6% / năm. Hỏi sau đúng 18 năm kể từ ngày đóng, người đó thu về được tất cả bao nhiêu triệu đồng (kết quả làm tròn đến hai chữ số phần thập phân). + Cho đa giác đều 18 cạnh. Nối tất cả các đỉnh với nhau. Chọn hai tam giác trong số các tam giác vuông tạo thành từ 3 đỉnh trong 18 đỉnh. Tính xác suất để chọn được hai tam giác có cùng chu vi. + Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. Đường thẳng SA vuông góc với mặt đáy, góc giữa SB và mặt đáy bằng 60. Gọi N là trung điểm của BC. a) Tính cosin của góc giữa hai đường thẳng SD và AN. b) Gọi H, K là hai điểm lần lượt thuộc các đường thẳng SB và DN sao cho HK SB HK DN. Tính độ dài đoạn HK theo a.
Đề thi học sinh giỏi Toán 11 cấp tỉnh năm 2020 - 2021 sở GDĐT Cà Mau
Chủ Nhật ngày 18 tháng 04 năm 2021, sở Giáo dục và Đào tạo tỉnh Cà Mau tổ chức kỳ thi chọn học sinh giỏi môn Toán lớp 11 cấp tỉnh năm học 2020 – 2021. Đề thi học sinh giỏi Toán 11 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Cà Mau gồm 01 trang với 07 bài toán dạng tự luận, thời gian làm bài 180 phút.