Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Bình Phước

Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Bình Phước tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Bình Phước. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Bình Phước, kỳ thi được diễn ra vào ngày 01/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Bình Phước : + Nông trường cao su Minh Hưng (xã Minh Hưng, huyện Bù Đăng, tỉnh Bình Phước) phải khai thác 260 tấn mũ trong một thời gian nhất ñịnh. Trên thực tế, mỗi ngày nông trường ñều khai thác vượt ñịnh mức 3 tấn. Do ñó, nông trường ñã khai thác ñược 261 tấn và song trước thời hạn 1 ngày. Hỏi theo kế hoạch mỗi ngày nông trường khai thác ñược bao nhiêu tấn mũ cao su. [ads] + Cho parabol (P): y = 1/2.x^2 và ñường thẳng (d): y = x + 2. a) Vẽ parabol (P) và ñường thẳng (d) trên cùng hệ trục tọa ñộ Oxy. b) Viết phương trình ñường thẳng (d1): y = ax + b song song với (d) và cắt (P) tại ñiểm A có hoành ñộ bằng −2 . + Không sử dụng máy tính, giải hệ phương trình 2x + y = 5  và x + 2y = 4.

Nguồn: toanmath.com

Đọc Sách

Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Bắc Giang
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Bắc Giang gồm 5 bài toán tự luận.
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Hà Nội (Chuyên Tin)
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Hà Nội (Chuyên Tin) gồm 5 bài toán tự luận, có lời giải chi tiết.
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Đồng Tháp
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Đồng Tháp gồm 5 bài toán tự luận. Trích một số bài toán trong đề: + Để tạo sân chơi cho học sinh tham gia các hoạt động tìm hiểu về hình ảnh và con người Đồng Tháp, Đoàn Thanh Niên Cộng Sản Hồ Chí Minh của một trường đã tổ chức hội thi Đồng Tháp trong trái tim tôi với các nội dung về hoạt động khởi nghiệp, du lịch trải nghiệm những địa danh ,nét văn hóa đặc trưng làng nghề, các món ăn, cây trái … của tỉnh. Sau hai vòng thi Ban Tổ Chức đã chọn ra ba đội xuất sắc là Hoa Sen, Hoa Súng, Hoa Tràm vào thi chung kết. Theo qui định của Ban Tổ Chức Hội Thi, mỗi đội phải trả lời 12 câu hỏi, mỗi câu trả lời đúng được cộng 10 điểm, mỗi câu trả lời sai trừ 3 điểm, mỗi câu không trả lời thì không được điểm. Trải qua các câu hỏi thì, đội Hoa Sen được 61 điểm. Hỏi đội Hoa Sen đã trả lời đúng, sai và không trả lời bao nhiêu câu hỏi? [ads] + Thực hiện đổi mới phương pháp dạy học ,đổi mới kiểm tra đánh giá theo hướng phát triển năng lục học sinh, trong một tiết dạy hình học, một giáo viên đã ứng dụng công nghệ thông tin, sử dụng phần mềm biểu diễn cho học sinh quan sát trực quan. Cụ thể: Hình thang cân ABCD (AB song song với CD), có AB = 30cm, CD = 54cm và đường cao AH = 9cm. Cho hình thang này quay quanh cạnh đáy CD. Em hãy giúp bạn tính: 1/ Thể tích của hình tạo thành. 2/ Diện tích mặt ngoài của hình tạo thành.
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Quãng Ngãi
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Quãng Ngãi gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho hai điểm A, B phân biệt nằm trong góc nhọn xOy sao cho góc xOA = góc yOB. Gọi M, N lần lượt là hình chiếu vuông góc của A lên các tia Ox, Oy và P, Q lần lượt là hình chiếu vuông góc của B lên các tia Ox, Oy .Gỉa sử M, N, P, Q đôi một phân biệt. Chứng minh rằng bốn điểm M,N,P,Q cùng thuộc một đường tròn. [ads] + Cho tam giác AB không cân, có ba góc nhọn. Một đường tròn đi qua B, C cắt các cạnh AC, AB lần lượt tại D, E. Gọi M, N lần lượt là trung điểm của BD, CE a. Chứng minh rằng các tam giác ABD, ACE đồng dạng với nhau và MAB = NAC. b. Gọi H là hình chiếu vuông góc của M lên AB, K là hình chiếu vuông góc của N lên AC và I là trung điểm của MN. Chứng minh rằng tam giác IHK cân. + Cho 9 số nguyên dương đôi một phân biệt ,các số đó đều chỉ chứa các ước số nguyên tố gồm 2, 3, 5. Chứng minh rằng trong 9 số đã cho tồn tại 2 số mà tích của chúng là một số chính phương.