Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh năng khiếu Toán 8 năm 2022 - 2023 phòng GDĐT Thanh Sơn - Phú Thọ

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh năng khiếu cấp huyện môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Thanh Sơn, tỉnh Phú Thọ; đề thi hình thức 40% trắc nghiệm khách quan + 60% tự luận, thời gian làm bài 120 phút, không kể thời gian giao đề; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề học sinh năng khiếu Toán 8 năm 2022 – 2023 phòng GD&ĐT Thanh Sơn – Phú Thọ : + Ghi chú: Thí sinh lựa chọn đáp án phần trắc nghiệm khách quan chỉ có một lựa chọn đúng. Thí sinh làm bài thi (cả phần trắc nghiệm khách quan và phần tự luận) trên tờ giấy thi (không làm bài trên đề thi). Cho tam giác ABC, các đường trung tuyến BD và CE. Lấy M, N trên BC sao cho BM = MN = NC. Gọi I là giao điểm của AM và BD, K là giao điểm của AN và CE. Biết BC = 10cm thì độ dài IK là? + Để lập đội tuyển năng khiếu bóng rổ nhà trường đưa ra quy định tuyển chọn như sau: mỗi bạn dự tuyển sẽ được ném 10 quả bóng vào rổ, quả bóng vào rổ được cộng 4 điểm; quả bóng ném ra ngoài thì bị trừ 2 điểm. Nếu bạn nào có số điểm từ 22 điểm trở lên thì sẽ được chọn vào đội tuyển. Một học sinh muốn được chọn vào đội tuyển thì số quả bóng phải ném vào rổ ít nhất là? + Cho tam giác ABC nhọn, đường cao BE và CF cắt nhau tại H. Qua B kẻ đường thẳng song song với CF cắt tia AH tại M, AH cắt BC tại D. a) Chứng minh 2 BD AD DM. b) Kẻ AK vuông góc với EF tại K. Chứng minh ∆AEK đồng dạng ∆AHF. c) Chứng minh: AB AC BE CF AE AF.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi huyện Toán 8 năm 2018 - 2019 phòng GDĐT Ninh Phước - Ninh Thuận
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi học sinh giỏi huyện Toán 8 năm học 2018 – 2019 phòng GD&ĐT huyện Ninh Phước, tỉnh Ninh Thuận; đề thi có lời giải chi tiết và thang chấm điểm. Trích dẫn đề thi học sinh giỏi huyện Toán 8 năm 2018 – 2019 phòng GD&ĐT Ninh Phước – Ninh Thuận : + Cho biểu thức A = (x – 1)(x + 2)(x + 3)(x + 6). Tìm giá trị của x để biểu thức A đạt giá trị nhỏ nhất. + Cho hình bình hành ABCD có DC = 2AD, từ trung điểm I của cạnh CD vẽ HI vuông góc với AB (H thuộc AB). Gọi E là giao điểm của AI và DH. Chứng minh rằng. + Cho tam giác ABC vuông tại A có AD là phân giác,biết BD = 14 3 17 cm, CD = 3 9 17 cm. Tính độ dài các cạnh góc vuông của tam giác.
Đề thi HSG Toán 8 năm 2018 - 2019 phòng GDĐT thị xã Giá Rai - Bạc Liêu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi HSG Toán 8 năm 2018 – 2019 phòng GD&ĐT thị xã Giá Rai – Bạc Liêu; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Tuyển tập 100 đề thi học sinh giỏi môn Toán 8 - Hồ Khắc Vũ
Tài liệu gồm 89 trang tuyển tập 100 đề thi chọn học sinh giỏi môn Toán lớp 8 từ các trường THCS, cơ sở GD và ĐT trên toàn quốc. Tài liệu do thầy Hồ Khắc Vũ tổng hợp và biên soạn.
Đề thi học sinh giỏi môn Toán 8 trường THCS Bãi Sậy - Hưng Yên
Đề thi học sinh giỏi môn Toán 8 trường THCS Bãi Sậy – Hưng Yên gồm 1 trang với 6 bài toán tự luận, thời gian làm bài 60 phút. Trích dẫn đề thi : + Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm D, kẻ DN vuông góc với AC và DM vuông góc AB. Kẻ đường cao AH của tam giác ABC. a. Tứ giác AMDN là hình gì? Vì sao? b. Tìm vị trí điểm D trên cạnh BC thì MN có độ dài nhỏ nhất? Vẽ hình đúng với vị trí của điểm D đó? c. Tính số đo góc MHN? [ads] + Chứng minh rằng biểu thức (x – 1 )(2x^2 + x + 1) – ( x – 2)(2x^2 + 3x + 6) có giá trị không phụ thuộc vào các biến? + Tìm các giá trị x; y nguyên dương sao cho 9xy + 3x + 3y = 51 + Tìm giá trị nhỏ nhất của đa thức N = x^2 + 5y^2 – 4xy + 6x – 14y + 15