Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG Toán 10 năm 2020 - 2021 cụm THPT huyện Yên Dũng - Bắc Giang

Ngày 28 tháng 01 năm 2021, cụm THPT huyện Yên Dũng, tỉnh Bắc Giang tổ chức kỳ thi học sinh giỏi cấp cơ sở môn Toán 10 năm học 2020 – 2021. Đề HSG Toán 10 năm 2020 – 2021 cụm THPT huyện Yên Dũng – Bắc Giang (mã đề 101 và mã đề 102) được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm 40 câu, chiếm 14 điểm, phần tự luận gồm 03 câu, chiếm 06 điểm, thời gian làm bài 120 phút. Trích dẫn đề HSG Toán 10 năm 2020 – 2021 cụm THPT huyện Yên Dũng – Bắc Giang : + Một doanh nghiệp tư nhân A chuyên kinh doanh xe gắn máy các loại. Hiện nay doanh nghiệp đang tập trung chiến lược vào kinh doanh xe Hon đa Future Fi với chi phí mua vào một chiếc là 27 triệu đồng và bán ra với giá 32 triệu đồng. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một năm là 400 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang ăn khách này, doanh nghiệp dự định giảm giá bán và ước tính rằng nếu giảm 1 triệu đồng mỗi chiếc xe thì số lượng xe bán ra trong một năm tăng thêm 100 chiếc. Hỏi doanh nghiệp phải định giá bán mới là bao nhiêu triệu đồng để sau khi đã thực hiện giảm giá, lợi nhuận thu được là cao nhất? + Khi một quả bóng được đá lên, nó sẽ đạt đến độ cao nào đó rồi rơi xuống. Biết rằng quỹ đạo của quả bóng là một cung parabol trong mặt phẳng với hệ tọa độ Oth, trong đó t là thời gian (tính bằng giây) kể từ khi quả bóng được đá lên; h là độ cao (tính bằng mét) của quả bóng. Giả thiết rằng quả bóng được đá lên từ độ cao 1,2 m. Sau đó 1 giây, nó đạt độ cao 8,5m và 2 giây sau khi đá lên, nó đạt độ cao 6m. Hỏi sau bao lâu thì quả bóng sẽ chạm đất kể từ khi được đá lên (tính chính xác đến hàng phần trăm? + Lớp 10C có 7 học sinh giỏi Toán, 5 học sinh giỏi Lý, 6 học sinh giỏi Hoá, 3 học sinh giỏi cả Toán và Lý, 4 học sinh giỏi cả Toán và Hoá, 2 học sinh giỏi cả Lý và Hoá, 1 học sinh giỏi cả 3 môn Toán, Lý, Hoá. Hỏi số học sinh giỏi ít nhất một môn (Toán, Lý, Hoá) của lớp 10C là?

Nguồn: toanmath.com

Đọc Sách

Đề thi HSG cấp trường lớp 10 môn Toán năm 2020 2021 trường Cẩm Xuyên Hà Tĩnh
Nội dung Đề thi HSG cấp trường lớp 10 môn Toán năm 2020 2021 trường Cẩm Xuyên Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi HSG cấp trường lớp 10 môn Toán năm 2020-2021 trường Cẩm Xuyên Hà Tĩnh Đề thi HSG cấp trường lớp 10 môn Toán năm 2020-2021 trường Cẩm Xuyên Hà Tĩnh Vào ngày ... tháng 01 năm 2021, trường THPT Cẩm Xuyên tỉnh Hà Tĩnh đã tổ chức kỳ thi chọn học sinh giỏi cấp trường môn Toán cho học sinh lớp 10 năm học 2020-2021. Đề thi HSG cấp trường môn Toán lớp 10 năm 2020-2021 của trường Cẩm Xuyên Hà Tĩnh bao gồm 01 trang với 07 bài toán dạng tự luận. Thời gian làm bài là 150 phút. Đề thi đi kèm với lời giải chi tiết và hướng dẫn chấm điểm. Một số câu hỏi trong đề thi HSG cấp trường lớp 10 môn Toán năm 2020-2021 của trường Cẩm Xuyên Hà Tĩnh: Cho hình vuông ABCD có cạnh bằng a. Gọi G là trọng tâm tam giác ABC và M, N là hai điểm lần lượt thuộc hai cạnh AB, CD sao cho AB = 6BM, DC = 3DN. Hãy tính độ dài của vectơ AB + AD theo a và chứng minh ba điểm M, N, G thẳng hàng. Cho hàm số y = x2 + mx + 1 (m là tham số). Hãy lập bảng biến thiên của hàm số khi m = -4 và tìm điều kiện của tham số m để đồ thị của hàm số cắt đường thẳng y = x + 1 tại hai điểm phân biệt nằm về một phía của trục hoành. Cho hàm số y = ax2 + bx + c có đồ thị như hình vẽ. Chứng minh rằng phương trình (1 - c)x2 + (2 - b)x + 1 - a = 0 luôn có hai nghiệm phân biệt. Đề thi HSG cấp trường lớp 10 môn Toán năm 2020-2021 của trường Cẩm Xuyên Hà Tĩnh cung cấp cho học sinh cơ hội thách thức tư duy và khám phá sự sáng tạo trong việc giải quyết các bài toán Toán học phức tạp.
Đề thi HSG lớp 10 môn Toán cấp trường năm 2020 2021 trường THPT Nguyễn Huệ Quảng Nam
Nội dung Đề thi HSG lớp 10 môn Toán cấp trường năm 2020 2021 trường THPT Nguyễn Huệ Quảng Nam Bản PDF Đề thi HSG môn Toán lớp 10 cấp trường năm học 2020-2021 của trường THPT Nguyễn Huệ - Quảng Nam là một bài thi khá đa dạng và phong phú với nhiều dạng bài tập khác nhau. Đề thi bao gồm 5 bài toán dạng tự luận, được thiết kế để kiểm tra khả năng nắm vững kiến thức của học sinh trong chương trình Toán lớp 10.Bài thi được thiết kế trên một trang giấy đơn, với thời gian làm bài là 90 phút. Đề thi cung cấp một ma trận và lời giải chi tiết cho các bài toán, giúp học sinh dễ dàng theo dõi và tự kiểm tra lại kết quả của mình.Các chủ đề trong đề thi bao gồm:- Hệ phương trình: Học sinh sẽ cần giải hệ hai phương trình bậc nhất hai ẩn và phương trình bậc hai một ẩn.- Hệ thức Vi-et và ứng dụng: Học sinh sẽ được vận dụng để tìm các giá trị của tham số cho trước.- Hàm số y = ax^2: Học sinh cần nhận biết và vẽ parabol, cũng như hiểu tương quan giữa đường thẳng và parabol.- Biến đổi biểu thức chứa căn thức bậc hai: Học sinh cần rút gọn biểu thức chứa căn thức bậc hai.- Hệ thức về cạnh và đường cao trong tam giác vuông: Học sinh sẽ chứng minh đẳng thức có liên quan đến cạnh và đường cao của tam giác vuông, và vận dụng để giải bài toán liên quan.Đề thi này đánh giá khả năng suy luận, giải quyết vấn đề và ứng dụng kiến thức Toán lớp 10 của học sinh. Bằng cách này, đề thi giúp học sinh rèn luyện kỹ năng và củng cố kiến thức một cách hiệu quả.
Đề thi chọn HSG lớp 10 môn Toán lần 1 năm 2020 2021 trường THPT chuyên KHTN Hà Nội
Nội dung Đề thi chọn HSG lớp 10 môn Toán lần 1 năm 2020 2021 trường THPT chuyên KHTN Hà Nội Bản PDF - Nội dung bài viết Đề thi chọn Học sinh giỏi lớp 10 môn Toán lần 1 năm học 2020-2021 trường THPT chuyên Khoa học Tự nhiên Hà Nội Đề thi chọn Học sinh giỏi lớp 10 môn Toán lần 1 năm học 2020-2021 trường THPT chuyên Khoa học Tự nhiên Hà Nội Ngày Thứ Năm 10 tháng 09 năm 2020, Trường THPT chuyên Khoa học Tự nhiên, Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội đã tổ chức kỳ thi tuyển chọn học sinh giỏi môn Toán lớp 10 năm học 2020-2021 lần thứ nhất. Đề thi chọn Học sinh giỏi môn Toán lớp 10 lần 1 năm 2020-2021 trường THPT chuyên Khoa học Tự nhiên Hà Nội bao gồm 01 trang với 05 bài toán dạng tự luận. Thời gian làm bài thi là 180 phút (không tính thời gian phát đề). Trích đề thi chọn HSG môn Toán lớp 10 lần 1 năm 2020-2021 trường THPT chuyên KHTN - Hà Nội: Cho tam giác ABC nhọn nội tiếp trong đường tròn (O). Điểm P nằm trong tam giác sao cho PB = PC. Tìm điểm Q trên đường tròn ngoại tiếp tam giác PBC và nằm trong tam giác sao cho PQA + OAP = 90 độ. Gọi M là trung điểm của BC. Điểm K thuộc cạnh BC sao cho KAB = MAC. Chứng minh rằng QK vuông góc QP. Tìm tất cả các số nguyên dương n sao cho tất cả các ước nguyên dương (phân biệt) của n có thể sắp xếp thành một bảng hình chữ nhật trong đó tổng các số trên mỗi hàng và mỗi cột đều bằng nhau. Tìm tất cả các bộ ba số nguyên dương (x, y, p) với p là số nguyên tố thỏa mãn: x^2 - 3xy + p^2.y^2 = 12y. Đề thi này khá khó, đòi hỏi sự tỉ mỉ và logic cao từ các thí sinh. Hy vọng các em sẽ hoàn thành tốt và đạt kết quả cao trong kỳ thi này.
Đề thi Olympic lớp 10 môn Toán năm học 2019 2020 cụm Sóc Sơn Mê Linh Hà Nội
Nội dung Đề thi Olympic lớp 10 môn Toán năm học 2019 2020 cụm Sóc Sơn Mê Linh Hà Nội Bản PDF - Nội dung bài viết Đề thi Olympic Toán lớp 10 năm học 2019 - 2020 cụm Sóc Sơn - Mê Linh - Hà Nội Đề thi Olympic Toán lớp 10 năm học 2019 - 2020 cụm Sóc Sơn - Mê Linh - Hà Nội Sytu xin giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi Olympic Toán lớp 10 năm học 2019 - 2020 cụm Sóc Sơn - Mê Linh - Hà Nội. Đề thi bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 150 phút, và đề thi đi kèm lời giải chi tiết. Trích dẫn đề thi Olympic Toán lớp 10 năm học 2019 - 2020 cụm Sóc Sơn - Mê Linh - Hà Nội: 1. Một người có một khu đất bãi rộng dọc theo bờ sông. Người đó muốn làm một hàng rào hình chữa E để chia khu đất thành hai phần để trồng rau và chăn nuôi. Để tính toán chi phí, nguyên vật liệu đối với hàng rào song song với bờ sông là 80000 đồng/mét, đối với phần còn lại là 40000 đồng/mét. Hỏi diện tích lớn nhất của phần đất mà người đó rào được với chi phí vật liệu 20 triệu đồng. 2. Trong mặt phẳng tọa độ Oxy, hình thang ABCD vuông tại A và D(2;2), CD = 2AB. Gọi H là hình chiếu của D lên cạnh AC và M là trung điểm của HC. Phương trình đường thẳng DH và BM lần lượt là 2x + y - 6 = 0 và 4x + 7y - 61 = 0. Yêu cầu tìm tọa độ các đỉnh A, B, C của hình thang. 3. Cho tam giác ABC và điểm O bất kỳ trong tam giác. Gọi M, N, P lần lượt là hình chiếu của O lên các cạnh BC, AC, AB. Chứng minh rằng BC/OM + AC/ON + AB/OP ≥ 2p/r, trong đó p là nửa chu vi và r là bán kính đường tròn nội tiếp tam giác ABC.