Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra cuối hè năm 2019 lớp 11 môn Toán trường THPT chuyên Bắc Ninh

Nội dung Đề kiểm tra cuối hè năm 2019 lớp 11 môn Toán trường THPT chuyên Bắc Ninh Bản PDF Với mục đích kiểm tra lại các kiến thức Toán lớp 10 của học sinh khối 11 sau quá trình nghỉ hè kéo dài, vừa qua, trường THPT chuyên Bắc Ninh đã tổ chức kỳ thi kiểm tra chất lượng môn Toán cuối kỳ nghỉ hè năm 2019, qua đây, học sinh sẽ ôn tập lại các kiến thức Toán lớp 10, nhằm làm nền tảng vững chắc trước khi vào học chương trình môn Toán lớp 11. Đề kiểm tra cuối hè năm 2019 môn Toán lớp 11 trường THPT chuyên Bắc Ninh được dành cho học sinh các lớp chuyên Toán, đề được biên soạn theo dạng đề tự luận với 05 bài toán, học sinh làm bài trong khoảng thời gian 150 phút (không kể thời gian giám thị coi thi phát đề), đề thi có lời giải chi tiết. Trích dẫn đề kiểm tra cuối hè năm 2019 môn Toán lớp 11 trường THPT chuyên Bắc Ninh : + Một công ty muốn làm một đường ống dẫn dầu từ một kho ở vị trí A ở trên bờ biển đến một vị trí B trên một hòn đảo (xem hình minh họa). Vị trí B trên hòn đảo cách bờ biển 6 km, gọi C là điểm trên bờ biển sao cho BC vuông góc với bờ biển. Khoảng cách từ A đến C là 9 km. Người ta cần xác định một ví trí D trên đoạn bờ biển AC để lắp ống dẫn theo đường gấp khúc ADB. Tính khoảng cách AD để số tiền chi phí cho việc lắp đặt đường ống dẫn là thấp nhất, biết rằng giá để lắp đặt mỗi km đường ống trên bờ là 100 triệu đồng và dưới nước là 260 triệu đồng. [ads] + Cho R là tập các số tự nhiên có 7 chữ số lập được từ hai chữ số 1 và 2. Ta xây dựng tập con S của R theo quy tắc sau: phần tử đầu tiên của S có thể chọn bất kì phần tử nào của R; hai phần tử phân biệt của S phải có ít nhất ba cặp chữ số ở ba hàng nào đó khác nhau. (chẳng hạn hai phần tử 1.111.111 và 1.111.222 là phân biệt vì có ba cặp chữ số ở hàng trăm, chục, đơn vị là khác nhau). Chứng tỏ rằng, theo quy tắc này, với mọi cách xây dựng tập S, số phần tử của S không vượt quá 16. + Cho tam giác ABC có AB < AC, đường tròn w nội tiếp tam giác ABC có tâm I và tiếp xúc với các cạnh BC, CA, AB lần lượt tại các điểm D, E, F. Đường tròn ngoại tiếp tam giác AEF cắt đường tròn ngoại tiếp tam giác ABC tại hai điểm A, P đồng thời cắt đường thẳng AD tại hai điểm A, K. Hai đường thẳng PI, EF cắt nhau tại điểm H, đường tròn ngoại tiếp tam giác DKH cắt đường tròn w tại hai điểm D, N. a) Chứng minh rằng hai đường thẳng DH và EF vuông góc với nhau. b) Chứng minh rằng đường tròn ngoại tiếp tam giác BNC tiếp xúc với đường tròn w. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi khảo sát Toán 11 lần 1 năm học 2017 - 2018 trường THPT Tứ Sơn - Bắc Giang
Đề thi khảo sát Toán 11 lần 1 năm học 2017 – 2018 trường THPT Tứ Sơn – Bắc Giang gồm 4 mã đề, mỗi đề gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề thi : + Trong các mệnh đề sau , mệnh đề nào đúng? A. Có một phép đối xứng trục là phép đồng nhất B. Thực hiện liên tiếp phép quay và phép vị tự ta được phép đồng dạng C. Phép đồng dạng là một phép dời hình D. Phép vị tự là một phép dời hình [ads] + Phương trình (cosx)^2 + (cos2x)^2 + (cos3x)^2 + (cos4x)^2 = 2 tương đương với phương trình lượng giác nào dưới đây: A. cosx.cos2x.cos5x = 0 B. sinx.sin2x.sin4x = 0 C. sinx.sin2x.sin5x = 0 D. cosx.cos2x.cos4x = 0 + Cho 2 đường thẳng song song. Trên đường thẳng thứ nhất lấy 7 điểm phân biệt, trên đường thẳng thứ hai lấy 9 điểm phân biệt. Hỏi có bao nhiêu tam giác có các đỉnh thuộc tập 16 điểm đã lấy trên hai đường thẳng trên? A. 560 tam giác B. 270 tam giác C. 441 tam giác D. 150 tam giác
Đề thi chuyên đề tháng 10 năm học 2017 - 2018 môn Toán 11 trường Nguyễn Thái Học - Vĩnh Phúc
Đề thi chuyên đề tháng 10 năm học 2017 – 2018 môn Toán 11 trường Nguyễn Thái Học – Vĩnh Phúc gồm 8 mã đề, mỗi đề gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án . Trích dẫn đề thi : + Tìm khẳng định sai: Phép đồng dạng tỉ số k A. Biến đường tròn bán kính R thành đường tròn bán kính kR B. Biến ba điểm thẳng hàng thành ba điểm thẳng hàng và bảo toàn thứ tự giữa các điểm ấy C. Biến đường thẳng thành đường thẳng thì hai đường thẳng đó song song hoặc trùng nhau D. Biến tam giác thành tam giác đồng dạng với nó [ads] + Chọn phát biểu sai trong các phát biểu sau: A. Đồ thị của hàm số y = sin2x nhận điểm O làm tâm đối xứng B. Đồ thị của hàm số y = cosx nhận trục Oy làm trục đối xứng C. Đồ thị của hàm số y = tan3x nhận điểm O làm tm đối xứng D. Đồ thị của hàm số y = cotx nhận trục Oy làm trục đối xứng + Cho điểm M trong mặt phẳng. Tìm khẳng định sai A. vtMM’ = vta thì phép đặt tương ứng điểm M với điểm M’ là phép biến hình B. Nếu a > 0, MM’ = a thì phép đặt tương ứng điểm M với điểm M’ là phép biến hình C. M’ là hình chiếu vuông góc của M trên đường thẳng d, phép đặt tương ứng điểm M với điểm M’ là phép biến hình D. M’ đối xứng M qua điểm I thi phép đặt tương ứng điểm M với điểm M’ là phép biến hình
Đề khảo sát môn Toán 11 năm học 2017 - 2018 trường THPT Quế Võ 2 - Bắc Ninh
Đề khảo sát môn Toán 11 năm học 2017 – 2018 trường THPT Quế Võ 2 – Bắc Ninh gồm 6 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề thi : + Trong hình lục giác đều ABCDEF tâm O, M và K là trung điểm của EF và BD. Phép quay tâm A góc quay 60◦ biến tam giác AFE thành: A. Tam giác AKD B. Tam giác AOC C. Tam giác DOB D. Tam giác F OB + Cho tứ diện ABCD có E là trung điểm của cạnh CD. Gọi M là trọng tâm các tam giác ABC, N là trung điểm của AE. Hỏi đường thẳng MN cắt bao nhiêu đường thẳng trong số 6 đường thẳng AB, BC, CA, AD, BD và CD? [ads] A. Cắt ba đường thẳng B. Cắt bốn đường thẳng C. Không đường thẳng nào cắt D. Cắt hai đường thẳng + Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB và AC, P là điểm trên cạnh AD sao cho AP = 2PD. Tìm giao điểm E của đường thẳng MP và mặt phẳng (BCD). A. E = BC ∩ MP B. E = BD ∩ MP C. E = CD ∩ MP D. E ≡ N
Đề thi KSCL Toán 11 lần 1 năm học 2017 - 2018 trường THPT Liễn Sơn - Vĩnh Phúc
Đề thi KSCL Toán 11 lần 1 năm học 2017 – 2018 trường THPT Liễn Sơn – Vĩnh Phúc gồm 1 trang với 6 bài toán tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi : + Cho tập A = {1, 2, 3, 4, 5, 6}. Từ các chữ số của tập A có thể lập được tất cả bao nhiêu số tự nhiên chẵn có 4 chữ số khác nhau. + Cho đường thẳng d: 3x – 2y + 1 = 0 và điểm I(1; 0). Phép vị tự tâm I, tỷ số 2 biến đường thẳng d thành đường thẳng d’. Viết phương trình đường thẳng d’. + Cho A(1; 2), B(-2; 5) và đường tròn (T): x^2 + y^2 – 4x + 2y – 4 = 0. Tìm tọa độ hai điểm C, D cùng thuộc đường tròn (T) sao cho tứ giác ABCD là hình bình hành. [ads]