Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 trường THCS Hải Hòa Nam Định

Nội dung Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 trường THCS Hải Hòa Nam Định Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 8 năm học 2022 - 2023 trường THCS Hải Hòa Nam Định Đề học sinh giỏi Toán lớp 8 năm học 2022 - 2023 trường THCS Hải Hòa Nam Định Chúng tôi xin gửi đến quý thầy cô và các em học sinh lớp 8 một bộ đề thi chọn học sinh giỏi môn Toán năm học 2022 - 2023 tại trường THCS Hải Hòa, huyện Hải Hậu, tỉnh Nam Định. Trích dẫn một số câu hỏi từ Đề thi học sinh giỏi Toán lớp 8 năm 2022 - 2023 trường THCS Hải Hòa: 1. Cho biểu thức A = x^2 + x - 2. a) Nêu điều kiện tồn tại và rút gọn biểu thức A. b) Tính giá trị của biểu thức A khi x thoả mãn: x^2 + x = 2. c) Tìm các giá trị x > 0 sao cho biểu thức 6B - A là số nguyên. 2. Cho tam giác ABC nhọn. Các đường cao AE và BF giao nhau tại H. Gọi M là trung điểm của BC. Vẽ đường thẳng a vuông góc với HM cắt AB, AC lần lượt tại I và K. a) Chứng minh. b) Kẻ đường thẳng b qua C song song với IK, b cắt AH, AB tại N và D. Chứng minh: NC = ND và HI = HK. c) Gọi G là giao điểm của CH và AB. Tìm giá trị nhỏ nhất của biểu thức P. 3. Cho hai số dương x, y thỏa mãn: x^2 + y^2 = 12 và 4x + 9y = 1. Hãy tìm giá trị nhỏ nhất của biểu thức Q = xy/(x^2 - 3y^2). Đề thi đầy thách thức này không chỉ giúp các em học sinh rèn luyện kỹ năng Toán mà còn phát triển khả năng tư duy logic và sự sáng tạo trong giải quyết vấn đề. Chúc các em học sinh có kết quả tốt trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG lớp 8 môn Toán năm 2018 2019 phòng GD ĐT thị xã Giá Rai Bạc Liêu
Nội dung Đề thi HSG lớp 8 môn Toán năm 2018 2019 phòng GD ĐT thị xã Giá Rai Bạc Liêu Bản PDF - Nội dung bài viết Đề thi HSG Toán lớp 8 năm 2018 - 2019 phòng GD&ĐT thị xã Giá Rai - Bạc Liêu Đề thi HSG Toán lớp 8 năm 2018 - 2019 phòng GD&ĐT thị xã Giá Rai - Bạc Liêu Sytu hân hạnh giới thiệu đến quý thầy cô và các em học sinh đề thi HSG môn Toán lớp 8 năm 2018 - 2019 của phòng GD&ĐT thị xã Giá Rai - Bạc Liêu. Đề thi này bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm, giúp các em học sinh ôn tập và chuẩn bị tốt cho kì thi sắp tới.
Tuyển tập 100 đề thi học sinh giỏi lớp 8 môn Toán Hồ Khắc Vũ
Nội dung Tuyển tập 100 đề thi học sinh giỏi lớp 8 môn Toán Hồ Khắc Vũ Bản PDF - Nội dung bài viết Tuyển tập 100 đề thi học sinh giỏi lớp 8 môn Toán Hồ Khắc Vũ Tuyển tập 100 đề thi học sinh giỏi lớp 8 môn Toán Hồ Khắc Vũ Tài liệu này bao gồm 89 trang với 100 đề thi chọn lọc từ học sinh giỏi môn Toán lớp 8 đến từ các trường THCS, cơ sở GD và ĐT trên toàn quốc. Được biên soạn và tổng hợp bởi thầy Hồ Khắc Vũ, tài liệu này sẽ giúp các em học sinh chuẩn bị tốt hơn cho kì thi học sinh giỏi.
Đề thi học sinh giỏi lớp 8 môn Toán trường THCS Bãi Sậy Hưng Yên
Nội dung Đề thi học sinh giỏi lớp 8 môn Toán trường THCS Bãi Sậy Hưng Yên Bản PDF - Nội dung bài viết Đề thi học sinh giỏi môn Toán lớp 8 trường THCS Bãi Sậy - Hưng Yên Đề thi học sinh giỏi môn Toán lớp 8 trường THCS Bãi Sậy - Hưng Yên Đề thi học sinh giỏi môn Toán lớp 8 trường THCS Bãi Sậy - Hưng Yên được thiết kế với 6 bài toán tự luận, dành cho học sinh có kiến thức và kỹ năng Toán cao cấp. Thời gian làm bài được giới hạn trong 60 phút để thử thách sự nhanh nhạy và chính xác của thí sinh. Bài toán đầu tiên yêu cầu học sinh chứng minh Tứ giác AMDN là hình gì và vị trí của điểm D trên cạnh BC để đạt được độ dài MN nhỏ nhất, cùng tính số đo góc MHN trong tam giác ABC. Bài toán thứ hai yêu cầu học sinh chứng minh rằng biểu thức (x - 1)(2x^2 + x + 1) - (x - 2)(2x^2 + 3x + 6) không phụ thuộc vào các biến, làm quen với phép toán đơn giản nhưng logic và chính xác. Bài toán thứ ba đưa ra bài toán tìm giá trị của x và y sao cho 9xy + 3x + 3y = 51, kích thích khả năng suy luận và giải quyết vấn đề của học sinh. Trong bài toán cuối cùng, học sinh sẽ phải tìm giá trị nhỏ nhất của đa thức N = x^2 + 5y^2 - 4xy + 6x - 14y + 15, yêu cầu kết hợp nhiều phép toán và kiến thức Toán học để giải quyết bài toán phức tạp. Đề thi này không chỉ đánh giá kiến thức mà còn khích lệ học sinh phát huy sự sáng tạo, logic và khả năng giải quyết vấn đề, từ đó phát triển tư duy Toán học toàn diện. Đồng thời, cũng giúp học sinh thấy được mục tiêu mà họ cần hướng đến và cần cố gắng nỗ lực hơn trong học tập.
Đề thi học sinh giỏi lớp 8 môn Toán cấp tỉnh năm 2016 2017 sở GD ĐT Lai Châu
Nội dung Đề thi học sinh giỏi lớp 8 môn Toán cấp tỉnh năm 2016 2017 sở GD ĐT Lai Châu Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 8 cấp tỉnh năm 2016 – 2017 sở GD&ĐT Lai Châu Đề thi học sinh giỏi Toán lớp 8 cấp tỉnh năm 2016 – 2017 sở GD&ĐT Lai Châu Sytu xin giới thiệu đến quý thầy cô và các em học sinh đề thi học sinh giỏi Toán lớp 8 cấp tỉnh năm 2016 – 2017 sở GD&ĐT Lai Châu. Kỳ thi đã diễn ra vào ngày 09 tháng 04 năm 2017. Trích dẫn đề thi học sinh giỏi Toán lớp 8 cấp tỉnh năm 2016-2017 sở GD&ĐT Lai Châu: Cho hình vuông EFGH. Từ E, vẽ góc vuông xEy sao cho cạnh Ex cắt các đường thẳng FG và GH theo thứ tự ở M và N, còn cạnh Ey cắt hai đường thẳng trên lần lượt ở P và Q. a) Chứng minh rằng các tam giác EMQ và ENP là các tam giác vuông cân. b) Đường thẳng QM cắt NP ở R. Gọi I và K theo thứ tự là trung điểm của PN và QM. Tứ giác EKRI là hình gì? Vì sao? c) Chứng minh bốn điểm F, H, K, I thẳng hàng. Cho biểu thức a) Rút gọn A; b) Tìm giá trị nguyên của x để A có giá trị nguyên. Cho ba số a, b, c thỏa mãn điều kiện abc = 2017. Tính giá trị của biểu thức: P = 2^(ab) * 3^(ac) * 5^(bc) * 9^(abc).