Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài giảng hàm số lượng giác và phương trình lượng giác Toán 11 Cánh Diều

Tài liệu gồm 220 trang, được biên soạn bởi thầy giáo Trần Đình Cư, bao gồm tóm tắt kiến thức cơ bản cần nắm, phân loại và phương pháp giải bài tập chuyên đề hàm số lượng giác và phương trình lượng giác trong chương trình môn Toán 11 Cánh Diều (CD). Mục lục : BÀI 1 . GÓC LƯỢNG giác GIÁ TRỊ LƯỢNG GIÁC CỦA MỘT GÓC LƯỢNG GIÁC 4. A. TÓM TẮT KIẾN THỨC CƠ BẢN CẦN NẮM 4. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP 8. Dạng 1. Đơn vị đo độ và rađian 8. 1. Phương pháp 8. 2. Các ví dụ minh họa 8. Dạng 2. Biểu diễn cung lượng giác trên đường tròn lượng giác 9. 1. Phương pháp 9. 2. Các ví dụ minh họa 9. Dạng 3. Độ dài của một cung tròn 11. 1. Phương pháp giải 11. 2. Các ví dụ minh họa 11. Dạng 4. Tính giá trị của góc còn lại hoặc của một biểu thức lượng giác khi biết một giá trị lượng giác 12. 1. Phương pháp giải 12. 2. Các ví dụ minh họa 12. Dạng 5. Xác định giá trị của biểu thức chứa góc đặc biệt, góc liên quan đặc biệt và dấu của giá trị lượng giác của góc lượng giác 15. 1. Phương pháp giải 15. 2. Các ví dụ minh họa 16. Dạng 6. Chứng minh đẳng thức lượng giác, chứng minh biểu thức không phụ thuộc góc x, đơn giản biểu thức 17. 1. Phương pháp giải 17. 2. Các ví dụ minh họa 17. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA 20. D. BÀI TẬP TRẮC NGHIỆM 26. BÀI 2 . CÁC PHÉP BIẾN ĐỔI LƯỢNG GIÁC 61. A. TÓM TẮT KIẾN THỨC CƠ BẢN CẦN NẮM 61. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP 62. Dạng 1. Sử dụng công thức cộng 62. 1. Phương pháp giải 62. 2. Các ví dụ minh họa 62. Dạng 2. Sử dụng công thức nhân đôi và công thức hạ bậc 67. 1. Phương pháp 67. 2. Các ví dụ minh họa 67. Dạng 3. Công thức biến đổi tổng thành tích và tích thành tổng 71. 1. Phương pháp giải 71. 2. Các ví dụ minh họa 72. Dạng 4. bất đẳng thức lượng giác và tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức lượng giác 76. 1. Phương pháp giải 76. 2. Các ví dụ điển hình 77. Dạng 5. chứng minh đẳng thức, bất đẳng thức trong tam giác 79. 1. Phương pháp giải 79. 2. Các ví dụ minh họa 79. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA 87. D. BÀI TẬP TRẮC NGHIỆM 92. BÀI 3 . HÀM SỐ LƯỢNG GIÁC VÀ ĐỒ THỊ 121. A. TÓM TẮT KIẾN THỨC CƠ BẢN CẦN NẮM 121. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP LỜI GIẢI BÀI TẬP 125. Dạng 1. Tìm tập xác đinh của hàm số 125. 1. Phương pháp 125. 2. Các ví dụ mẫu 126. Dạng 2. Xét tính chẵn lẻ của hàm số 127. 1. Phương pháp 127. 2. Các ví dụ mẫu 128. Dạng 3. Tìm giá trị lớn nhất và và giá trị nhỏ nhất của hàm số lượng giác 130. 1. Phương pháp 130. 2. Ví dụ mẫu 131. Dạng 4. Chứng minh hàm số tuần hoàn và xác định chu kỳ của nó 134. 1. Phương pháp 134. 2. Ví dụ mẫu 135. Dạng 5. Đồ thị của hàm số lượng giác 136. 1. Phương pháp 136. 2. Các ví dụ mẫu 137. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA 140. D. BÀI TẬP TRẮC NGHIỆM 149. BÀI 4 . PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN 178. A. TÓM TẮT KIẾN THỨC CƠ BẢN CẦN NẮM 178. B. CÁC VÍ DỤ RÈN LUYỆN KĨ NĂNG 180. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA 184. D. BÀI TẬP TRẮC NGHIỆM 191. BÀI TẬP CUỐI CHƯƠNG 1 201. PHẦN 1. GIẢI BÀI TẬP SÁCH GIÁO KHOA 201. PHẦN 2. BÀI TẬP THÊM 209.

Nguồn: toanmath.com

Đọc Sách

Phương trình lượng giác thường gặp - Lê Văn Đoàn
Tài liệu gồm 44 trang được biên soạn bởi thầy Lê Văn Đoàn hướng dẫn phương pháp giải một số dạng phương trình lượng giác thường gặp và một số bài tập nhằm giúp học sinh tự rèn luyện. Dạng toán 1 . Phương trình bậc hai và bậc cao theo một hàm lượng giác. Quan sát và dùng các công thức biến đổi để đưa phương trình về cùng một hàm lượng giác (cùng sin hoặc cùng cos hoặc cùng tan hoặc cùng cot) với cung góc giống nhau. + Nhóm 1. Phương trình bậc hai cơ bản. + Nhóm 2. Sử dụng công thức (sinx)^2 + (cosx)^2 = 1. + Nhóm 3. Sử dụng công thức nhân đôi khi cung góc gấp đôi nhau. + Nhóm 4. Vừa hạ bậc vừa nhân đôi khi tồn tại cung góc gấp 4 lần nhau. + Nhóm 5. Sử dụng công thức liên quan đến tan, cot đưa về phương trình bậc hai. + Nhóm 6. Phương trình quy về phương trình bậc hai (dạng nâng cao). Dạng toán 2 . Phương trình lượng giác bậc nhất đối với sin và cos (phương trình cổ điển). + Nhóm 1. Dạng cơ bản asinx + bcosx = c. + Nhóm 2. Dạng asinx + bcosx = √(a^2 + b^2)sin(βx + γ) và asinx + bcosx = √(a^2 + b^2)cos(βx + γ) (với a^2 + b^2 khác 0). + Nhóm 3. Dạng asin(mx) + bcos(mx) + csin(nx) + dcos(nx) (với a^2 + b^2 = c^2 + d^2 ≠ 0). Dạng toán 3 . Phương trình lượng giác đẳng cấp. + Nhóm 1. Đẳng cấp bậc hai. + Nhóm 2. Đẳng cấp bậc ba, bậc bốn. Dạng toán 4 . Phương trình lượng giác đối xứng. Dạng toán 5 . Một số dạng khác. + Nhóm 1. Phương trình dạng msin2x + ncos2x + psinx + qcosx + r = 0. + Nhóm 2. Phương trình có chứa R(… tanX, cotX, sin2X, cos2X, tan2X …) sao cho cung của sin, cos gấp đôi cung của tan hoặc cotan. + Nhóm 3. Áp dụng công thức lượng giác tan(x + a)tan(b – x) = 1 khi a + b = pi/2 + kpi, cot(x + a)cot(b – x) = 1 khi a + b = pi/2 + kpi hay tan(a ± b) = (tana ± tanb)/(1 ± tanatanb). + Nhóm 4. Đặt số đo cung phức tạp để đưa về phương trình quen thuộc.
Chuyên đề hàm số lượng giác và phương trình lượng giác
Tài liệu gồm 52 trang phân dạng và tuyển chọn các bài tập chuyên đề hàm số lượng giác và phương trình lượng giác thuộc chương trình Đại số và Giải tích 11 chương 1. 1. HÀM SỐ LƯỢNG GIÁC Dạng 1. Tìm tập xác định của hàm số lượng giác. Dạng 2. Tính chẵn lẻ của hàm số. Dạng 3. Chu kỳ của hàm số lượng giác. Dạng 4. Chứng minh T0 là chu kì của một hàm số lượng giác. Dạng 5. Bảng biến thiên và đồ thị của hàm số lượng giác. Dạng 6. Sử dụng phép biến đổi đồng nhất và tính chất của hàm số lượng giác. Dạng 7. Các bài toán sử dụng bất đẳng thức đã biết để tìm giá trị lớn nhất và giá trị nhỏ nhất. Dạng 8. Các bài toán sử dụng tính đồng biến nghịch biến. Dạng 9. Các bài toán liên quan đến asin x + bcos x = c. 2. PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN CÓ ĐIỀU KIỆN [ads] 3. PHƯƠNG TRÌNH LƯỢNG GIÁC THƯỜNG GẶP 3.1. Phương trình bậc hai đối với một hàm số lượng giác. Dạng 1. Một số dạng cơ bản phương trình bậc hai đối với một hàm số lượng giác. 3.2 Phương trình bậc nhất đối với sin và cos. Dạng 2. Phương trình bậc nhất đối với sin và cos. 3.3 Phương trình thuần nhất đối với sin và cos. Dạng 3. Phương trình thuần nhất đối với sin và cos. 4. PHƯƠNG TRÌNH LƯỢNG GIÁC KHÔNG MẪU MỰC Dạng 1. Phương pháp đưa về tổng bình phương. Dạng 2. Phương pháp đối lập. Dạng 3. Phương pháp chứng minh nghiệm duy nhất. Dạng 4. Phương pháp đặt ẩn phụ. Dạng 5. Phương pháp đưa về hệ phương trình. Dạng 6. Một số phương trình lượng giác có cách giải đặc biệt. 4.1 Phương trình lượng giác có nghiệm trên khoảng, đoạn. 4.2 Dạng toán khác về phương trình lượng giác thường gặp.
Chuyên đề hàm số lượng giác và phương trình lượng giác - Đặng Thị Oanh
Tài liệu gồm 47 trang tóm gọn lý thuyết và bài tập trắc nghiệm chuyên đề hàm số lượng giác và phương trình lượng giác thuộc chương trình Đại số và Giải tích 11 chương 1, tài liệu được biên soạn bởi cô giáo Đặng Thị Oanh. §1. HÀM SỐ LƯỢNG GIÁC 1. Tập xác định của hàm số lượng giác. 2. Chu kỳ của hàm số lượng giác. 3. Tập giá trị của hàm số lượng giác. 4. Tính chẵn, lẻ của hàm số lượng giác. 5. Tập đơn điệu của hàm số lượng giác. 6. Đồ thị của hàm số lượng giác. 7. Bài tập trắc nghiệm hàm số lượng giác. §2. PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN [ads] §3. MỘT SỐ PHƯƠNG TRÌNH LƯỢNG GIÁC THƯỜNG GẶP 1. Phương trình bậc hai đối với một hàm số lượng giác. 2. Phương trình bậc nhất đối với sin x và cos x. 3. Phương trình đẳng cấp bậc hai. 4. Phương trình đối xứng. 5. Phương trình dạng khác. 6. Bài tập trắc nghiệm. ĐỀ THI ĐẠI HỌC, CAO ĐẴNG VÀ TNPT CÁC NĂM ÔN TẬP CHƯƠNG I
321 bài toán trắc nghiệm phương trình lượng giác thường gặp - Trần Tuấn Huy
Tài liệu gồm 36 trang được biên soạn bởi thầy Trần Tuấn Huy tuyển chọn 321 bài toán trắc nghiệm phương trình lượng giác thường gặp có đáp án. Các dạng toán được đề cập trong tài liệu : + Loại 1. Phương trình bậc nhất đối với một hàm số lượng giác. + Loại 2. Phương trình bậc cao đối với sinx. + Loại 3. Phương trình bậc cao đối với cosx. + Loại 4. Phương trình bậc cao đối với sinx và cosx. + Loại 5. Phương trình bậc cao đối với tanx và cotx. + Loại 6. Phương trình đẳng cấp. + Loại 7. Phương trình dạng asinx + bcosx = c. + Loại 8. Phương trình đối xứng và phản đối xứng. + Loại 9. Phương trình lượng giác chứa ẩn ở mẫu. + Loại 10. Phương trình lượng giác có chứa tham số. + Loại 11. Một số dạng toán khác.