Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG Toán 7 năm 2023 - 2024 phòng GDĐT thành phố Bắc Ninh

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp thành phố môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Bắc Ninh, tỉnh Bắc Ninh; kỳ thi được diễn ra vào ngày 10 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi chọn HSG Toán 7 năm 2023 – 2024 phòng GD&ĐT thành phố Bắc Ninh : + Cho tam giác ABC vuông tại A B C 2 kẻ AH vuông góc với BC tại H. Trên tia HC lấy điểm D sao cho HD HB. Từ C kẻ đường thẳng vuông góc với đường thẳng AD tại E. a) Tam giác ABD là tam giác gì? Vì sao? b) Chứng minh rằng DE DH HE AC. c) Gọi K là giao điểm của AH và CE, lấy điểm I bất kỳ thuộc đoạn thẳng HE I H I E. Chứng minh rằng 3 2 AC IA IK IC. + Một số nguyên dương được gọi là số may mắn nếu số đó gấp 99 lần tổng tất cả các chữ số của nó. Tìm số may mắn có bốn chữ số. + Cho tam giác ABC vuông tại A, độ dài cạnh huyền bằng 2015. Trong tam giác ABC lấy 2031121 điểm phân biệt bất kỳ. Chứng minh rằng tồn tại ít nhất hai điểm có khoảng cách không lớn hơn 1.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 7 năm 2020 - 2021 phòng GDĐT thành phố Quảng Ngãi
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi môn Toán 7 năm học 2020 – 2021 phòng Giáo dục và Đào tạo thành phố Quảng Ngãi, tỉnh Quảng Ngãi.
Đề học sinh giỏi Toán 7 năm 2020 - 2021 phòng GDĐT Cao Lộc - Lạng Sơn
Đề học sinh giỏi Toán 7 năm 2020 – 2021 phòng GD&ĐT Cao Lộc – Lạng Sơn gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút.
Đề chọn học sinh năng khiếu Toán 7 năm 2020 - 2021 phòng GDĐT Sơn Dương - Tuyên Quang
Đề chọn học sinh năng khiếu Toán 7 năm 2020 – 2021 phòng GD&ĐT Sơn Dương – Tuyên Quang gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút.
Đề học sinh giỏi Toán 7 năm 2020 - 2021 phòng GDĐT Yên Định - Thanh Hóa
Đề học sinh giỏi Toán 7 năm 2020 – 2021 phòng GD&ĐT Yên Định – Thanh Hóa gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút, kỳ thi được diễn ra vào ngày 02 tháng 02 năm 2021, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi Toán 7 năm 2020 – 2021 phòng GD&ĐT Yên Định – Thanh Hóa : + Tìm một số chính phương có 4 chữ số biết rằng 2 chữ số đầu giống nhau, 2 chữ số cuối giống nhau. + Tìm các số nguyên dương n và các số nguyên tố p sao cho n n p. + Cho ABC có góc A nhỏ hơn 900. Trên nửa mặt phẳng bờ AB không chứa điểm C vẽ đoạn thẳng AM sao cho AM vuông góc với AB và AM = AB, trên nửa mặt phẳng bờ AC không chứa điểm B vẽ đoạn thẳng AN sao cho AN vuông góc với AC và AN = AC. a) Chứng minh rằng: AMC = ABN. b) Chứng minh: BN CM. c) Kẻ AH BC (H BC). Chứng minh AH đi qua trung điểm của MN.