Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Trà Vinh

Nội dung Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Trà Vinh Bản PDF - Nội dung bài viết Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Trà Vinh Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Trà Vinh Chào đón quý thầy cô và các em học sinh! Đây là đề chính thức của kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2023 – 2024 tại sở Giáo dục và Đào tạo tỉnh Trà Vinh. Kỳ thi sẽ diễn ra vào thứ Bảy ngày 03 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Trà Vinh: Trong mặt phẳng tọa độ Oxy, hãy vẽ đồ thị của parabol (P): y = x2 và đường thẳng (d): y = −x + 2. Sau đó, bằng phép toán, tìm tọa độ giao điểm của (P) và (d). Thang cuốn ở siêu thị giúp khách hàng di chuyển giữa các tầng một cách tiện lợi. Với độ nghiêng 36° và vận tốc 0,5m/s, tính chiều cao của thang cuốn nếu một khách hàng mất 12 giây để từ tầng một lên tầng hai theo hướng AB. Từ điểm M nằm bên ngoài đường tròn tâm O, vẽ hai tiếp tuyến MA và MB với đường tròn (A, B là tiếp điểm). Chứng minh rằng tứ giác MAOB nội tiếp đường tròn và chứng minh MA2 = MD.MC. Mong rằng những câu hỏi này sẽ giúp các em học sinh rèn luyện kỹ năng và kiến thức trong môn Toán. Chúc các em thành công trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Quãng Ngãi
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Quãng Ngãi gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho hai điểm A, B phân biệt nằm trong góc nhọn xOy sao cho góc xOA = góc yOB. Gọi M, N lần lượt là hình chiếu vuông góc của A lên các tia Ox, Oy và P, Q lần lượt là hình chiếu vuông góc của B lên các tia Ox, Oy .Gỉa sử M, N, P, Q đôi một phân biệt. Chứng minh rằng bốn điểm M,N,P,Q cùng thuộc một đường tròn. [ads] + Cho tam giác AB không cân, có ba góc nhọn. Một đường tròn đi qua B, C cắt các cạnh AC, AB lần lượt tại D, E. Gọi M, N lần lượt là trung điểm của BD, CE a. Chứng minh rằng các tam giác ABD, ACE đồng dạng với nhau và MAB = NAC. b. Gọi H là hình chiếu vuông góc của M lên AB, K là hình chiếu vuông góc của N lên AC và I là trung điểm của MN. Chứng minh rằng tam giác IHK cân. + Cho 9 số nguyên dương đôi một phân biệt ,các số đó đều chỉ chứa các ước số nguyên tố gồm 2, 3, 5. Chứng minh rằng trong 9 số đã cho tồn tại 2 số mà tích của chúng là một số chính phương.
Đề thi thử tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THCS Nga Thiện - Thanh Hóa
Đề thi thử tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THCS Nga Thiện – Thanh Hóa gồm 5 bài toán tự luận, có lời giải chi tiết.
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Hà Nam
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Hà Nam gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho đường tròn (O). Từ một điểm M nằm ngoài đường tròn (O), kẻ hai tiếp tuyến MA và MB của đường tròn (A, B là các tiếp điểm). Kẻ đường kính BE của đường tròn (O). Gọi F là giao điểm thứ hai của đường thẳng ME và đường tròn (O). Đường thẳng AF cắt MO tại điểm N. Gọi H là giao điểm của MO và AB [ads] 1) Chứng minh tứ giác MAOB nội tiếp đường tròn 2) Chứng minh đường thẳng AE song song với đường thẳng MO 3) Chứng minh: MN2 = NF.NA 4) Chứng minh: MN = NH
Đề thi thử tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán trường THCS Thiệu Vận - Thanh Hóa lần 1
Đề thi thử tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán trường THCS Thiệu Vận – Thanh Hóa lần 1 gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = 2(m – 2)x + m – 3 và parabol (P): y = mx^2 (m khác 0) a. Tìm m để đường thẳng d đi qua điểm A (-1;3) b. Tìm m để (d) cắt (P) tại hai điểm phân biệt có hoành độ x1, x2 trái dấu (với (d) là ở đề bài cho) [ads] + Cho đường tròn tâm (0), đường kính AB = 2R. Trên đường thẳng AB lấy điểm H sao cho B nằm giữa A và H (H không trùng với B), qua H dựng đường thẳng d vuông góc với AB. Lấy C cố định thuộc đoạn thẳng OB (C không trùng với O và B). Qua điểm C kẻ đường thẳng a bất kì cắt đường tròn (0) tại hai điểm E và F (a không trùng với AB). Các tia AE và AF cắt đường thẳng d lần lượt tại M, N a) Chứng minh tứ giác BEMH nội tiếp đường tròn b) Chứng minh 2 tam giác AFB và AHN đồng dạng, và đường tròn ngoại tiếp tam giác AMN luôn đi qua một điểm cố định khác A khi đường thẳng a thay đổi c) Cho AB = 4cm; BC = 1cm; HB = 1 cm. Tìm giá trị nhỏ nhất của diện tích tam giác AMN