Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG Toán 9 cấp tỉnh năm học 2019 - 2020 sở GDĐT Quảng Nam

Thứ Tư ngày 10 tháng 06 năm 2020, sở Giáo dục và Đào tạo tỉnh Quảng Nam tổ chức kỳ thi chọn học sinh giỏi môn Toán khối lớp 9 năm học 2019 – 2020. Đề thi HSG Toán 9 cấp tỉnh năm học 2019 – 2020 sở GD&ĐT Quảng Nam gồm có 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 150 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HSG Toán 9 cấp tỉnh năm học 2019 – 2020 sở GD&ĐT Quảng Nam : + Cho nửa đường tròn tâm O, đường kính AB = 2a, H là điểm nằm trên đoạn thẳng OA sao cho HA = 2HO. Đường thẳng vuông góc với AB tại H cắt nửa đường tròn đã cho tại C. Hạ HP vuông góc với AC tại P, HQ vuông góc với BC tại Q. a) Chứng minh OC vuông góc với PQ. b) Gọi I là giao điểm của OC và PQ. Tính độ dài đoạn thẳng CI theo a. c) Lấy điểm M trên tia đối của tia BA (M khác B), đường thẳng MC cắt nửa đường tròn đã cho tại điểm thứ hai là D. Hai đường tròn ngoại tiếp hai tam giác OAC và OBD cắt nhau tại điểm thứ hai là K, gọi E là giao điểm của AD và BC. Chứng minh bốn điểm A, B, E, K cùng nằm trên một đường tròn và KO vuông góc với KE. [ads] + Cho tam giác ABC vuông tại A có AC = 2AB, H là chân đường cao vẽ từ A của tam giác ABC, D là trung điểm của HC. a) Chứng minh tam giác ADH vuông cân. b) Gọi F là trung điểm AC, dựng hình vuông ABEF. Chứng minh tứ giác ABED nội tiếp trong đường tròn và tính diện tích tam giác ADE khi AB = 2 cm. + Cho phương trình x^2 – 3(m + 1)x + 2m^2 + 7m – 4 = 0 với m là tham số. Tìm m để phương trình đã cho có hai nghiệm phân biệt sao cho bình phương của một nghiệm bằng ba lần nghiệm còn lại.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi Toán 9 năm 2019 - 2020 phòng GDĐT Đống Đa - Hà Nội
Ngày 19 tháng 10 năm 2019, phòng Giáo dục và Đào tạo quận Đống Đa, thành phố Hà Nội tổ chức kỳ thi chọn học sinh giỏi quận lớp 9 môn Toán năm học 2019 – 2020. Đề thi học sinh giỏi Toán 9 năm học 2019 – 2020 phòng GD&ĐT Đống Đa – Hà Nội gồm 05 bài toán, thời gian làm bài 120 phút, đề thi có lời giải chi tiết và biểu điểm. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2019 – 2020 phòng GD&ĐT Đống Đa – Hà Nội : + Cho a, b, c là các số thực dương thỏa mãn a > c và b > c. Chứng minh rằng: √c(a – c) + √c(b – c) ≤ √ab. [ads] + Cho hình vuông ABCD. Lấy điểm E thuộc đoạn thẳng BC nhưng không trùng với các điểm B và C. Lấy điểm G sao cho AG vuông góc với AE và điểm H sao cho AH vuông góc với EG, trong đó các điểm G, H thuộc đường thẳng CD. Hai đoạn thẳng EG và AH cắt nhau tại K. 1. Chứng minh rằng tam giác AEG vuông cân. 2. Chứng minh rằng CG.HG = AE^2. 3. Tính số đo của góc CBK. + Cho 1011 số nguyên dương khác nhau không vượt quá 2019. Chứng minh trong các số đã cho có ít nhất hai số mà một số chia hết cho số còn lại.
Đề thi chọn HSG huyện Toán 9 năm 2019 - 2020 phòng GDĐT Quan Sơn - Thanh Hóa
Ngày 09 tháng 10 năm 2019, phòng Giáo dục và Đào tạo huyện Quan Sơn, tỉnh Thanh Hóa tổ chức kỳ thi chọn học sinh giỏi cấp huyện môn Toán 9 năm 2019 – 2020. Đề thi chọn HSG huyện Toán 9 năm 2019 – 2020 phòng GD&ĐT Quan Sơn – Thanh Hóa gồm có 05 bài toán dạng tự luận, thời gian làm bài 150 phút, đề thi gồm có 01 trang. [ads] Trích dẫn đề thi chọn HSG huyện Toán 9 năm 2019 – 2020 phòng GD&ĐT Quan Sơn – Thanh Hóa : + Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. Chứng minh rằng: 1. AF.AB = AH.AD = AE.AC. 2. H là tâm đường tròn nội tiếp tam giác DEF. 3. Gọi M, N, P, I, K, Q lần lượt là trung điểm các đoạn thẳng BC, AC, AB, EF, ED, DF. Chứng minh rằng các đường thẳng MI, NQ, PK đồng quy. 4. Gọi độ dài các đoạn thẳng AB, BC, CA lần lượt là a, b, c. Độ dài các đoạn thẳng AD, BE, CF là a’, b’, c’. Tìm giá trị nhỏ nhất của biểu thức: (a + b + c)^2/(a’^2 + b’^2 + c’^2). + Cho hai số dương a, b thỏa mãn: a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: A = 1/ab + 1/(a^2 + b^2). + Tìm các số nguyên x để biểu thức x^4 – x^2 + 2x + 2 là số chính phương.
Đề thi học sinh giỏi Toán 9 năm 2019 - 2020 phòng GDĐT Thị xã Quảng Trị
Đề thi học sinh giỏi Toán 9 THCS năm học 2019 – 2020 phòng Giáo dục và Đào tạo Thị xã Quảng Trị gồm 05 bài toán, đề có thang điểm 20, gồm 01 trang, kỳ thi nhằm tuyển chọn các em học sinh lớp 9 có thành tích học tập môn Toán xuất sắc để tuyên dương, khen thưởng và thành lập đội tuyển học sinh giỏi Toán 9. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2019 – 2020 phòng GD&ĐT Thị xã Quảng Trị : + Cho a, b, c là ba số thực không âm và thỏa mãn a + b + c = 1. Tìm giá trị nhỏ nhất của biểu thức A = √(5a + 4) + √(5b + 4) + √(5c + 4). [ads] + Cho hình vuông ABCD có E nằm trên đường chéo AC sao cho AE = 3EC, F là trung điểm AD. Chứng minh tam giác BEF vuông cân. + Cho tam giác ABC vuông tại A. Gọi H là hình chiếu vuông góc của A trên BC và E, F lần lượt là hình chiếu vuông góc của H trên AB, AC. a) Chứng minh: BE/CF = AB^3/AC^3. a) Ching minn: CFAC: b) Gọi S1, S2 lần lượt là diện tích tam giác ABC và diện tích hình chữ nhật AEHF. Tìm đặc điểm của tam giác ABC để S2/S1 đạt giá trị lớn nhất.
Đề thi HSG cấp huyện Toán 9 năm 2019 - 2020 phòng GDĐT Như Xuân - Thanh Hoá
Thứ Ba ngày 22 tháng 10 năm 2019, phòng Giáo dục và Đào tạo huyện Như Xuân, tỉnh Thanh Hóa tổ chức kỳ thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2019 – 2020, nhằm tuyển chọn các em học sinh lớp 9 đang học tập tại các trường Trung học Cơ sở trên địa bàn tỉnh Thanh Hóa, có thành tích học tập môn Toán xuất sắc, để tuyên dương và bổ sung vào đội tuyển học sinh giỏi Toán 9 của tỉnh nhà. Đề thi HSG cấp huyện Toán 9 năm học 2019 – 2020 phòng GD&ĐT Như Xuân – Thanh Hoá gồm có 05 bài toán, đề thi gồm 01 trang, dạng tự luận, thời gian làm bài 150 phút. [ads] Trích dẫn đề thi HSG cấp huyện Toán 9 năm 2019 – 2020 phòng GD&ĐT Như Xuân – Thanh Hoá : + Tìm số tự nhiên n sao cho A = n^2 + 3n + 7 là số chính phương. + Tìm tất cả các tam giác vuông có độ dài cạnh là số nguyên và số đo diện tích bằng số đo chu vi. + Cho tam giác ABC vuông ở A, AH vuông góc BC, HE vuông góc AB, HF vuông góc AC (H thuộc BC, E thuộc AB, F thuộc AC). a) Chứng minh rằng: AE.AB = AF.AC và BH = BC.(cosB)^2. b) Chứng minh rằng: AB^3/AC^3 = BE/CF. c) Chứng minh rằng: (BC^2)^1/3 = (CF^2)^1/3 + (BE^2)^1/3. d) Cho BC = 2a. Tìm giá trị lớn nhất của diện tích tứ giác AEHF.