Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề trọng điểm bồi dưỡng học sinh giỏi hình học không gian - Nguyễn Quang Sơn

Cuốn sách hình học không gian được biên soạn nhằm mục đích: “Hình học không gian không còn là mối lo lắng cho các bạn học sinh phổ thông”. Cuốn sách hệ thống hóa toàn bộ kiến thức từ cơ bản đến nâng cao hình học không gian lớp 11, lớp 12 và luyện thi THPT Quốc gia. Nội dung cuốn sách gồm: + Chương 1. Đại cương hình học không gian + Chương 2. Quan hệ song song trong không gian + Chương 3. Quan hệ vuông góc trong không gian + Chương 4. Thể tích khối trụ, thể tích khối chóp + Chương 5. Mặt cầu, mặt trụ, mặt nón + Chương 6. Bài tập tổng hợp lớp 12 học kỳ I + Chương 7. Bài tập tổng hợp ôn thi THPT Quốc gia [ads] Cuốn sách được trình bày ngắn gọn, rõ ràng, với một lượng bài tập rất lớn và rất đầy đủ, các bài tập được giải chi tiết, chặt chẽ, dễ hiểu nhằm giúp các em có một định hướng để giải quyết bài tập đó. Cuốn sách được phân bố 6 chương, mỗi chương được tóm tắt lý thuyết đầy đủ, bài tập trong mỗi chương được phân dạng rõ ràng, mỗi dạng có tóm tắt phương pháp giải bài tập, bài tập phân bố trong mỗi chương hay trong mỗi phần là từ dễ đến khó, mỗi phần đều lồng ghép, đan xen các bài tập nhằm ôn luyện kỳ thi THPT Quốc gia. Những bài tập dễ nhằm mục đích giúp các bạn nắm rõ lý thuyết và phương pháp để chứng minh hoặc giải quyết một vấn đề cụ thể, từ đó các bạn có kỹ năng để giải quyết những bài tập khó hơn. Hy vọng cuốn sách là người bạn đồng hành tốt cho các em trong quá trình học và trong những kỳ thi.

Nguồn: toanmath.com

Đọc Sách

Chủ đề khối nón - khối trụ - khối cầu ôn thi tốt nghiệp THPT môn Toán
Tài liệu gồm 133 trang, được biên soạn bởi thầy giáo Phan Nhật Linh, tổng hợp lý thuyết trọng tâm, ví dụ minh họa và các dạng bài tập chủ đề khối nón – khối trụ – khối cầu ôn thi tốt nghiệp THPT môn Toán, có đáp án và lời giải chi tiết. LÍ THUYẾT. + MẶT NÓN TRÒN XOAY VÀ KHỐI NÓN. 1. Mặt nón tròn xoay. 2. Khối nón. + MẶT TRỤ TRÒN XOAY. 1. Mặt trụ. 2. Hình trụ tròn xoay và khối trụ tròn xoay. + MẶT CẦU VÀ KHỐI CẦU. 1. Mặt cầu. 2. Công thức tính diện tích mặt cầu và thể tích khối cầu. 3. Một số công thức tính đặc biệt về khối tròn xoay. VÍ DỤ MINH HỌA. DẠNG 1 Các yếu tố liên quan đến khối nón, khối trụ. DẠNG 2 Khối tròn xoay nội, ngoại tiếp khối đa diện. DẠNG 3 Bài toán cực trị và toán thực tế. DẠNG 4 Khối cầu ngoại tiếp khối đa diện. DẠNG 5 Khối tròn xoay trong đề thi của Bộ Giáo dục và Đào tạo.
Bài toán thực tế hình học không gian
Tài liệu gồm 22 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề bài toán thực tế hình học không gian, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 2. I. LÝ THUYẾT TRỌNG TÂM II. CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI + Người ta muốn thiết kế một bể cá bằng kính không có nắp với thể tích 72dm3 và chiều cao là 3dm. Một vách ngắn (cung mặt kính) ở giữa, chia bể cá thành hai ngăn, với các kích thước a b (đơn vị dm) như hình vẽ. Tính a b để bể cá tốn ít nguyên liệu nhất (tính cả tấm kính ở giữa), coi bề dày các tấm kính như nhau và không ảnh hưởng đến thể tích của bể. + Một bình đựng đầy nước có dạng hình nón (không có đáy). Người ta thả vào đó một khối cầu có đường kính bằng chiều cao của bình nước và đo được thể tích nước tràn ra ngoài là 318π dm. Biết rằng khối cầu tiếp xúc với tất cả các đường sinh của hình nón và đúng một nửa của khối cầu đã chìm trong nước (hình dưới đây). Tính thể tích nước còn lại trong bình. + Có một bể hình hộp chữ nhật chứa đầy nước. Người ta cho ba khối nón giống nhau có thiết diện qua trục là một tam giác vuông cân vào bể sao cho ba đường tròn đáy của ba khối nón tiếp xúc với nhau, một khối nón có đường tròn đáy chỉ tiếp xúc với một cạnh của đáy bể và hai khối nón còn lại có đường tròn đáy tiếp xúc với hai cạnh của đáy bể. Sau đó người ta đặt lên đỉnh của ba khối nón một khối cầu có bán kính bằng 4 3 lần bán kính đáy của khối nón. Biết khối cầu vừa đủ ngập trong nước và lượng nước trào ra là 337 3 3 cm π. Tính thể tích nước ban đầu ở trong bể. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề hình học không gian Toán 12 - Lê Quang Xe
Tài liệu gồm 411 trang, được biên soạn bởi thầy giáo Lê Quang Xe, tóm tắt lý thuyết, ví dụ minh họa và bài tập rèn luyện chuyên đề hình học không gian trong chương trình môn Toán 12. CHƯƠNG 1 . ĐA DIỆN 1. §1 – THỂ TÍCH KHỐI ĐA DIỆN 1. A Tóm tắt lý thuyết 1. B Ví dụ minh họa 4. C Bài tập rèn luyện 12. + Dạng 1.Mở đầu khối đa diện 12. + Dạng 2.Thể tích khối lăng trụ đứng 22. + Dạng 3.Thể tích khối chóp có cạnh bên vuông góc với đáy 55. + Dạng 4.Thể tích khối chóp có mặt bên vuông góc với đáy 89. + Dạng 5.Thể tích khối chóp đều 121. + Dạng 6.Thể tích khối tứ diện đặc biệt 151. + Dạng 7.Tỉ số thể tích 197. + Dạng 8.Các bài toán thể tích chọn lọc 244. + Dạng 9.Bài toán góc – khoảng cách 284. + Dạng 10.Cực trị khối đa diện 325. CHƯƠNG 2 . KHỐI TRÒN XOAY 344. §1 – MẶT NÓN, MẶT TRỤ & MẶT CẦU 344. A Tóm tắt lý thuyết 344. B Ví dụ 346. C Bài tập rèn luyện 348. + Dạng 1.Các yếu tố liên quan đến khối nón, Khối trụ 348. + Dạng 2.Khối tròn xoay nội, ngoại tiếp đa diện 370. + Dạng 3.Cực trị và toán thực tế về khối tròn xoay 381.
Toàn tập khối tròn xoay cơ bản
Tài liệu gồm 40 trang, được biên soạn bởi thầy giáo Lương Tuấn Đức (Giang Sơn), tuyển tập hệ thống bài tập trắc nghiệm chuyên đề khối tròn xoay cơ bản lớp 12 THPT. Cơ bản khối trụ (phần 1). Cơ bản khối trụ (phần 2). Cơ bản khối trụ (phần 3). Cơ bản khối nón (phần 1). Cơ bản khối nón (phần 2). Cơ bản khối nón (phần 3). Cơ bản khối cầu (phần 1). Cơ bản khối cầu (phần 2). Cơ bản khối cầu (phần 3). Cơ bản khối cầu (phần 4). Cơ bản khối cầu (phần 5). Cơ bản khối cầu (phần 6). Cơ bản tổng hợp khối tròn xoay (phần 1). Cơ bản tổng hợp khối tròn xoay (phần 2). Cơ bản tổng hợp khối tròn xoay (phần 3). Cơ bản tổng hợp khối tròn xoay (phần 4). Cơ bản tổng hợp khối tròn xoay (phần 5). Cơ bản tổng hợp khối tròn xoay (phần 6). Cơ bản tổng hợp khối tròn xoay (phần 7). Cơ bản tổng hợp khối tròn xoay (phần 8).