Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

650 câu trắc nghiệm có lời giải chi tiết trong các đề thi THPTQG môn Toán

Nhằm giúp quý thầy, cô giáo cùng các em học sinh khối 12 có thêm tài liệu chất lượng để ôn tập chuẩn bị cho kỳ thi THPT Quốc gia môn Toán năm học 2019 – 2020, giới thiệu tài liệu 650 câu trắc nghiệm có lời giải chi tiết trong các đề thi THPTQG môn Toán. Tài liệu gồm 360 trang được biên soạn bởi thầy Tiêu Phước Thừa tuyển chọn 650 câu hỏi và bài toán trắc nghiệm có đáp án và lời giải chi tiết, từ các đề thi chính thức THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo trong các năm 2017, 2018, 2019. Khái quát nội dung tài liệu tuyển tập các câu hỏi và bài tập trong đề thi THPT Quốc gia môn Toán: 1. Bài toán chỉ sử dụng P hoặc C hoặc A. 2. Bài toán kết hợp P, C và A. 3. Nhị thức newton. 4. Tính xác suất bằng định nghĩa. 5. Tính xác suất bằng công thức cộng. 6. Tính xác suất bằng công thức nhân. 7. Tính xác suất kết hợp công thức nhân và cộng. 8. Nhận diện cấp số cộng. 9. Tìm hạng tử cấp số cộng. 10. Giới hạn dãy số. 11. Giới hạn hàm số. 12. Bài toán tiếp tuyến. 13. Bài toán quãng đường vận tốc gia tốc. 14. Xét tính đơn điệu dựa vào công thức. 15. Xét tính đơn điệu dựa vào công thức. 16. Tìm điều kiện để hàm số đơn điệu. 17. Ứng dụng tính đơn điệu vào giải phương trình, hệ phương trình, bất phương trình. 18. Cực trị hàm số cho bởi công thức. 19. Tìm cực trị dựa vào bbt, đồ thị. 20. Tìm m để hàm số đạt cực trị tại một điểm x0 cho trước. 21. Tìm m để hàm số, đồ thị hàm số bậc ba có cực trị thỏa mãn điều kiện. 22. Tìm m để hàm số, đồ thị hàm số trùng phương có cực trị thỏa mãn điều kiện. 23. Tìm m để hàm số, đồ thị hàm số các hàm số khác có cực trị thỏa mãn điều kiện. 24. Giá trị nhỏ nhất, Giá trị lớn nhất của hàm số trên đoạn. 25. Giá trị nhỏ nhất, Giá trị lớn nhất của hàm số trên khoảng. 26. Ứng dụng Giá trị lớn nhất, Giá trị nhỏ nhất, toán thực tế. 27. Bài toán xác định các đường tiệm cận của hàm số (không chứa tham số) hoặc biết bảng biến thiên, đồ thị. 28. Bài toán xác định các đường tiệm cận của hàm số có chứa tham số. 29. Bài toán liên quan đến đồ thị hàm số và các đường tiệm cận. 30. Câu hỏi lý thuyết về tiệm cận. 33. Biện luận nghiệm phương trình. 34. Sự tương giao của hai đồ thị (liên quan đến tọa độ giao điểm). 35. Điểm đặc biệt của đồ thị hàm số. 36. Lũy thừa. 37. Tập xác định hàm số lũy thừa. 38. Tính giá trị biểu thức chứa lô-ga-rít. 39. Biến đổi, rút gọn, biểu diễn biểu thức chứa lô-ga-rít. 40. So sánh các biểu thức lô-ga-rít. 41. Tập xác định của hàm số mũ hàm số logarit. 42. Tính đạo hàm hàm số mũ, hàm số lô-ga-rít. 43. Khảo sát sự biến thiên và đồ thị của hàm số mũ, lô-ga-rít. 44. Tìm giá trị lớn nhất, nhỏ nhất của biểu thức chứa hàm mũ, hàm lô-ga-rít. 45. Bài toán thực tế về hàm số mũ, logarit. 46. Lý thuyết tổng hợp hàm số lũy thừa, mũ, lô-ga-rít. 47. Phương trình cơ bản. 48. Đưa về cùng cơ số. 49. Đặt ẩn phụ. 50. Dùng phương pháp hàm số đánh giá. [ads] 51. Toán thực tế. 52. Bất phương trình cơ bản. 53. Đưa về cùng cơ số. 54. Đặt ẩn phụ. 55. Toán thực tế. 56. Sử dụng định nghĩa – tính chất cơ bản. 57. Dùng phương pháp nguyên hàm từng phần. 58. Tích phân cơ bản. 59. Phương pháp đổi biến. 60. Phương pháp từng phần. 61. Hàm đặc biệt hàm ẩn. 62. Diện tích hình phẳng được giới hạn bởi các đồ thị. 63. Bài toán thực tế sử dụng diện tích hình phẳng. 64. Thể tích giới hạn bởi các đồ thị (tròn xoay). 65. Thể tích tính theo mặt cắt S(x). 66. Toán thực tế. 67. Xác định các yếu tố cơ bản của số phức. 68. Biểu diễn hình học cơ bản của số phức. 69. Thực hiện phép tính cộng, trừ, nhân số phức. 70. Xác định các yếu tố cơ bản của số phức qua các phép toán. 71. Bài toán quy về giải phương trình, hệ phương trình nghiệm thực. 72. Bài toán tập hợp điểm số phức. 73. Phép chia số phức. 74. Phương trình bậc hai với hệ số thực. 75. Phương trình quy về bậc hai. 76. Phương pháp hình học. 77. Phương pháp đại số. 78. Xác định góc giữa hai đường thẳng (dùng định nghĩa). 79. Xác định góc giữa mặt phẳng và đường thẳng. 80. Xác định góc giữa hai mặt phẳng. 81. Góc giữa 2 véctơ, 2 đường thẳng trong hình lăng trụ, hình lập phương. 82. Khoảng cách điểm đến đường mặt. 83. Khoảng cách giữa hai đường chéo nhau. 84. Xác định số đỉnh, cạnh, mặt bên của một khối đa diện. 85. Phân chia, lắp ghép các khối đa diện. 86. Phép biến hình trong không gian. 87. Diện tích xung quanh diện tích toàn phần. 88. Tính thể tích các khối đa diện. 89. Tỉ số thể tích. 90. Các bài toán khác (góc, khoảng cách …) liên quan đến thể tích khối đa diện. 91. Toán thực tế. 92. Cực trị. 93. Thể tích khối nón, khối trụ. 94. Diện tích xung quanh, toàn phần, độ dài đường sinh, chiều cao, bán kính. 95. Khối tròn xoay nội tiếp, ngoại tiếp khối đa diện. 96. Bài toán thực tế về khối nón, khối trụ. 97. Bài toán sử dụng định nghĩa, tính chất, vị trí tương đối. 98. Khối cầu ngoại tiếp khối đa diện. 99. Toán tổng hợp về mặt cầu. 100. Tìm tọa độ điểm, véc-tơ liên quan đến hệ trục Oxyz. 101. Tích vô hướng và ứng dụng. 102. Phương trình mặt cầu (xác định tâm, bán kính, viết phương trình mặt cầu đơn giản, vị trí tương đối, hai mặt cầu, điểm đến mặt cầu, đơn giản). 103. Các bài toán cực trị. 104. Tích có hướng và ứng dụng. 105. Xác định vectơ pháp tuyến. 106. Viết phương trình mặt phẳng. 107. Tìm tọa độ điểm liên quan đến mặt phẳng. 108. Các bài toán khoảng cách. 109. Các bài toán xét vị trí tương đối. 110. Các bài toán cực trị. 111. Xác định vec-tơ chỉ phương. 112. Viết phương trình đường thẳng. 113. Tìm tọa độ điểm liên quan đường thẳng. 114. Khoảng cách. 115. Vị trí tương đối. 116. Tổng hợp mặt phẳng đường thẳng mặt cầu. 117. Các bài toán cực trị. 118. Ứng dụng phương pháp tọa độ.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề lớp 11 môn Toán ôn thi THPT Quốc gia Lư Sĩ Pháp
Nội dung Chuyên đề lớp 11 môn Toán ôn thi THPT Quốc gia Lư Sĩ Pháp Bản PDF - Nội dung bài viết Chuyên đề lớp 11 môn Toán ôn thi THPT Quốc gia Lư Sĩ Pháp Chuyên đề lớp 11 môn Toán ôn thi THPT Quốc gia Lư Sĩ Pháp Được biên soạn bởi thầy Lư Sĩ Pháp, cuốn tài liệu này gồm 96 trang tổng hợp lý thuyết và bài tập trắc nghiệm có đáp án các chuyên đề Toán lớp 11 nhiều khả năng xuất hiện trong đề thi THPT Quốc gia môn Toán. Tài liệu này bám sát chương trình chuẩn và chương trình nâng cao về môn Toán do Bộ Giáo dục và Đào tạo quy định. Các chuyên đề trong tài liệu bao gồm: Chuyên đề 1: Lượng giác Chuyên đề 2: Tổ hợp và xác suất Chuyên đề 3: Dãy số, cấp số cộng và cấp số nhân Chuyên đề 4: Giới hạn Chuyên đề 5: Phép dời hình và phép đồng dạng Mỗi chuyên đề được chia thành hai phần: Phần lý thuyết: Nắm vững lý thuyết cần thiết cho mỗi chuyên đề. Phần trắc nghiệm: Tổng hợp bài tập trắc nghiệm đa dạng, phong phú và bám sát cấu trúc thi của Bộ Giáo dục và Đào tạo. Đây là tài liệu hữu ích để học sinh lớp 11 ôn tập chuẩn bị cho kì thi THPT Quốc gia môn Toán. Việc tự học và rèn luyện thông qua tài liệu này sẽ giúp học sinh nắm vững kiến thức cần thiết và tự tin hơn khi tham dự kỳ thi quan trọng.
Công phá kỹ thuật Casio Nguyễn Ngọc Nam, Ngọc Huyền LB
Nội dung Công phá kỹ thuật Casio Nguyễn Ngọc Nam, Ngọc Huyền LB Bản PDF - Nội dung bài viết Giới thiệu về sách Công phá kỹ thuật CasioNội dung chính của sách Giới thiệu về sách Công phá kỹ thuật Casio Sytu đem đến cho bạn đọc bản PDF xem trước của cuốn sách Công phá kỹ thuật Casio – một nguồn tư liệu quý giá giúp bạn tự tin hơn khi học Toán ở các cấp độ lớp 10, 11, 12. Cuốn sách này có tổng cộng 496 trang và được biên soạn bởi hai tác giả tài năng Nguyễn Ngọc Nam và Ngọc Huyền LB. Nội dung chính của sách Trước hết, trong phần 1 của sách, bạn sẽ được giới thiệu tổng quan về các tính năng trên máy tính Casio cầm tay. Tất cả các phím chức năng và công dụng của chúng được trình bày một cách chi tiết và đầy đủ, giúp bạn hiểu rõ hơn về cách sử dụng máy tính Casio trong giải toán, đặc biệt phù hợp với những học sinh mới bắt đầu làm quen với máy tính này. Phần 2 của sách tập trung vào các chủ đề Toán sử dụng máy tính Casio, bao gồm 11 chủ đề từ lớp 10 đến lớp 12. Các chủ đề này bao gồm cả đại số, giải tích và hình học, với nội dung về hàm số, giới hạn, tổ hợp, xác suất, hàm số lượng giác, phương trình, hệ phương trình, bất phương trình, và nhiều nội dung khác. Mỗi chủ đề được trình bày kỹ lưỡng, cung cấp ví dụ và bài tập rèn luyện, giúp bạn hiểu rõ hơn cách giải và áp dụng công thức vào thực tế. Cuối cùng, sách còn cung cấp các kỹ thuật bổ trợ, công thức giải nhanh cùng ví dụ áp dụng và hướng dẫn chi tiết để bạn có thể áp dụng kiến thức một cách linh hoạt và hiệu quả.
Hướng dẫn giải một số bài toán ứng dụng thực tiễn Trần Hoàng Long
Nội dung Hướng dẫn giải một số bài toán ứng dụng thực tiễn Trần Hoàng Long Bản PDF - Nội dung bài viết Tài liệu Hướng dẫn giải bài toán thực tiễn của Trần Hoàng Long Tài liệu Hướng dẫn giải bài toán thực tiễn của Trần Hoàng Long Tài liệu này bao gồm 71 trang chọn lọc và hướng dẫn chi tiết cách giải một số bài toán thực tế sử dụng kiến thức Toán từ lớp 10 đến lớp 12. Việc áp dụng kiến thức toán học vào việc giải quyết các vấn đề thực tế là một phần quan trọng trong quá trình dạy và học toán ở trường phổ thông. Điều này được thể hiện rõ trong đề thi THPT quốc gia và các đề thi minh họa từ Bộ Giáo dục. Trong chương trình sách giáo khoa Toán hiện tại, đặc biệt là trong chương trình Đại số và Giải tích, có nhiều chủ đề kiến thức có thể được áp dụng vào việc giải quyết bài toán thực tế, như Hệ bất phương trình bậc nhất hai ẩn, Phương trình bậc hai, Bất phương trình bậc hai (lớp 10), Giải tích tổ hợp, Xác suất, Cấp số cộng, Cấp số nhân (lớp 11), Đạo hàm (lớp 12) và nhiều chủ đề khác. Qua tài liệu này, Trần Hoàng Long đã phân loại bài tập theo từng chủ đề kiến thức, tập trung vào việc sưu tầm các tình huống thực tiễn để từ đó tạo ra các bài toán thực tế cần giải quyết, áp dụng kiến thức toán học để giải quyết vấn đề. Ông cũng xây dựng hệ thống bài toán thực tế theo từng chủ đề kiến thức, giúp học sinh rèn luyện kỹ năng áp dụng kiến thức toán vào thực tiễn. Các chủ đề trong tài liệu bao gồm: Đạo hàm: Một công cụ quan trọng để tìm cực trị, giá trị lớn nhất, nhỏ nhất của hàm số. Được áp dụng để giải quyết những bài toán thực tế hấp dẫn và ý nghĩa. Hàm số: Từ tình huống thực tế, ta thu thập số liệu, lập hàm số và khảo sát để đưa ra phương án tối ưu. Hệ bất phương trình bậc nhất hai ẩn: Chủ đề này khai thác nhiều dạng toán gần gũi với cuộc sống như bài toán vận tải, sản xuất đồng bộ, lập kế hoạch sản xuất, vốn đầu tư nhỏ nhất, pha trộn v.v. Tài liệu này hướng đến việc giúp học sinh áp dụng kiến thức toán học vào thực tiễn một cách hiệu quả, và mong muốn nhận được phản hồi tích cực từ giáo viên và học sinh để cải thiện tài liệu trong tương lai.
Tiếp cận phương pháp và vận dụng cao trong trắc nghiệm bài toán thực tế
Nội dung Tiếp cận phương pháp và vận dụng cao trong trắc nghiệm bài toán thực tế Bản PDF - Nội dung bài viết Ứng dụng phương pháp và kỹ năng cao trong giải các bài toán thực tế Ứng dụng phương pháp và kỹ năng cao trong giải các bài toán thực tế Cuốn sách "Tiếp cận phương pháp và vận dụng cao trong trắc nghiệm bài toán thực tế" của tác giả Trần Công Diêu và Nguyễn Văn Quang bao gồm 444 trang chuyên sâu, giúp bạn hiểu rõ và áp dụng các phương pháp giải bài toán thực tế và bài toán cao cấp trong các lĩnh vực khác nhau. Sách này đã được tuyển chọn kỹ lưỡng và hướng dẫn cách giải chi tiết, từng bước một, giúp bạn nâng cao kỹ năng giải quyết vấn đề một cách hiệu quả. Với nhiều bài toán thực tế và vận dụng cao, cuốn sách cung cấp cho bạn kiến thức sâu rộng và những kỹ năng cần thiết để áp dụng vào thực tế.