Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề số chính phương

Số chính phương được định nghĩa là số bằng bình phương của một số nguyên. Cũng như số nguyên tố, thì bài toán về số chính phương cũng là dạng bài thường gặp trong chương trình Toán học lớp 6 – 7, dành cho học sinh giỏi Toán bậc THCS. Nhằm giúp các em có thể tìm hiểu các dạng toán về số chính phương, THCS. giới thiệu đến các em tài liệu chuyên đề số chính phương. Tài liệu gồm 63 trang giới thiệu 04 dạng toán về số chính phương thường gặp, cùng với đó là phương pháp giải, ví dụ mẫu và bài tập vận dụng (có lời giải chi tiết). Khái quát nội dung tài liệu chuyên đề số chính phương: A. Kiến thức cần nhớ 1. Định nghĩa số chính phương. 2. Một số tính chất cần nhớ. B. Các dạng toán thường gặp Dạng 1 : Chứng minh một số là số chính phương, hoặc là tổng nhiều số chính phương. Cơ sở phương pháp: Để chứng minh một số n là số là số chính phương ta thường dựa vào định nghĩa. [ads] Dạng 2 : Chứng minh một số không là số chính phương. Cơ sở phương pháp: Để chứng minh n không là số chính phương, tùy vào từng bài toán ta có thể sử dụng các cách sau: + Phương pháp 1. Chứng minh n không thể viết được dưới dạng một bình phương một số nguyên. + Phương pháp 2. Chứng minh k2 < n < (k + 1)2 với k là số nguyên. + Phương pháp 3. Chứng minh n có tận cùng là 2; 3; 7; 8. + Phương pháp 4. Chứng minh n có dạng 4k + 2; 4k + 3. + Phương pháp 5. Chứng minh n có dạng 3k + 2. + Phương pháp 6. Chứng minh n chia hết cho số nguyên tố p mà không chia hết cho p2. Dạng 3 : Điều kiện để một số là số chính phương. Cơ sở phương pháp: Chúng ta thường sử dụng các phương pháp sau: + Phương pháp 1: Sử dụng định nghĩa. + Phương pháp 2: Sử dụng tính chẵn, lẻ. + Phương pháp 3: Sử dụng tính chất chia hết và chia có dư. + Phương pháp 4: Sử dụng các tính chất. Dạng 4 : Tìm số chính phương. Cơ sở phương pháp: Dựa vào định nghĩa về số chính phương A = k2 với k là số nguyên và các yêu cầu của bài toán để tìm ra số chính phương thỏa bài toán.

Nguồn: toanmath.com

Đọc Sách

Tổng hợp các bài toán hình học phẳng ôn thi vào lớp 10 THPT năm học 2018 - 2019
Tài liệu gồm 119 trang được biên soạn bởi các tác giả Tạ Công Hoàng và Nguyễn Đăng Khoa, tổng hợp các bài toán hình học phẳng ôn thi vào lớp 10 THPT năm học 2018 – 2019, đây là dạng toán không thể thiếu trong các đề thi vào lớp 10 môn Toán và chiếm một tỉ lệ điểm số khá đáng kể và thường được sử dụng để phân loại các em học sinh trung bình với khá – giỏi. Các bài toán được vẽ hình, phân tích và giải chi tiết nhằm giúp học sinh hiểu sâu và nắm được các kỹ thuật giải đối với bài toán này. Trích dẫn tài liệu tổng hợp các bài toán hình học phẳng ôn thi vào lớp 10 THPT năm học 2018 – 2019 : + (Đề thi Phổ thông Năng khiếu 2000) Cho góc xAy = 90◦ và đường tròn (O) tiếp xúc với Ax và Ay lần lượt tại P, Q. Đường thẳng (d) là một tiếp tuyến thay đổi của (O). Gọi a, p, q là khoảng cách từ A, P, Q xuống đường thẳng (d). Chứng minh: a^2/pq không đổi khi (d) dịch chuyển. Khẳng định trên còn đúng không khi xAy d không phải góc vuông. [ads] + (Đề xuất bởi BunhiChySchwarz) Cho đường tròn (O), từ một điểm A nằm ngoài (O) kẻ hai tiếp tuyến AB, AC. Kẻ đường kính BD, lấy F là trung điểm OB. Qua A kẻ đường thẳng vuông góc với AB cắt OC tại E. Chứng minh: AD ⊥ EF. + (Đề thi Bà Rịa – Vũng Tàu 2017 – 2018) Cho tam giác ABC nội tiếp (O), (I) là đường tròn nội tiếp của tam giác ABC. AI cắt (O) tại A và J. E là trung điểm của BC. Tiếp tuyến tại B và C cắt nhau tại S. AS cắt (O) tại A và D. DI cắt (O) tại D và M. Chứng minh MJ chia đôi IE.
Tổng ôn tập Toán THCS thi vào lớp 10
Cuốn sách Tổng ôn tập Toán THCS thi vào lớp 10 gồm 193 trang hệ thống các chủ đề Toán học chính từ lớp 6 đến lớp 9 nhằm giúp học sinh ôn tập chuẩn bị cho kỳ thi vào lớp 10 môn Toán, đồng thời giúp các em có nền tảng kiến thức vững vàng để tiếp tục học tốt môn Toán THPT, sách được biên soạn bởi các tác giả: Mai Công Mãn (chủ biên), Nguyễn Trọng Dương, Nguyễn Thế Vận, Nguyễn Thị Hiền, Thiều Thị Huyền. Nội dung sách Tổng ôn tập Toán THCS thi vào lớp 10 gồm các chủ đề : Phần 1 . Đại số 1. Biến đổi đồng nhất 2. Biến đổi căn thức 3. Hàm số và đồ thị 4. Phương trình 5. Hệ phương trình 6. Giải bài toán bằng cách lập phương trình và hệ phương trình 7. Bất đẳng thức – Bất phương trình – Cực trị đại số [ads] Phần 2 . Hình học 1. Định lý Talet – Tam giác đồng dạng 2. Đường tròn 3. Hình học không gian
16 chuyên đề ôn thi vào lớp 10 môn Toán
THCS. giới thiệu đến thầy, cô và các em học sinh cuốn sách 16 chuyên đề ôn thi vào lớp 10 môn Toán, sách gồm 192 trang tuyển tập 9 chuyên đề Đại số và 7 chuyên đề Hình học môn Toán khối THCS nhằm giúp các em ôn tập để chuẩn bị cho kỳ thi vào lớp 10 môn Toán. Sách được biên soạn bởi các tác giả: Bùi Văn Tuyên (chủ biên) và Nguyễn Đức Trường. Phần 1. Các chuyên đề Đại số + Chuyên đề 1. Rút gọn và tính giá trị của biểu thức + Chuyên đề 2. Giải phương trình và hệ phương trình bậc nhất hai ẩn + Chuyên đề 3. Phương trình bậc hai một ẩn + Chuyên đề 4. Giải bài toán bằng cách lập phương trình hoặc hệ phương trình + Chuyên đề 5. Hàm số và đồ thị + Chuyên đề 6. Chứng minh bất đẳng thức + Chuyên đề 7. Giải bất phương trình + Chuyên đề 8. Tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức + Chuyên đề 9. Giải toán có nội dung số học [ads] Phần 2. Các chuyên đề Hình học + Chuyên đề 10. Chứng minh các hệ thức hình học + Chuyên đề 11. Chứng minh tứ giác nội tiếp và nhiều điểm cùng nằm trên đường tròn + Chuyên đề 12. Chứng minh quan hệ tiếp xúc giữa đường thẳng và đường tròn hoặc hai đường tròn + Chuyên đề 13. Chứng minh điểm cố định + Chuyên đề 14. Các bài tập có nội dung tính toán + Chuyên đề 15. Quỹ tích và dựng hình Phần 3. Một số đề thi vào lớp 10 môn Toán tham khảo Phần 4. Đáp số và hướng dẫn giải
Tài liệu chuyên Toán THCS
Tài liệu chuyên Toán THCS gồm 70 trang tuyển chọn các chuyên đề bồi dưỡng Toán dành cho học sinh khối chuyên và học sinh giỏi các lớp 6 – 7 – 8 – 9, đây là các chuyên đề thường xuất hiện trong các đề thi HSG và đề thi tuyển sinh vào 10 môn Toán. Trong mỗi chuyên đề đều bao gồm lý thuyết, ví dụ minh họa có lời giải chi tiết và phần bài tập rèn luyện. Các chuyên đề có trong tài liệu : 1. Chuyên đề 1: Phương pháp chứng minh phản chứng 2. Chuyên đề 2: Nguyên tắc Dirichlet 3. Chuyên đề 3: Định lý Bézout – Lược đồ Horner 4. Chuyên đề 4: Dấu tam thức bậc hai [ads] 5. Chuyên đề 5: Một số phương pháp giải phương trình nghiệm nguyên 6. Chuyên đề 6: Phần nguyên và ứng dụng 7. Chuyên đề 7: Đường thẳng Simson 8. Chuyên đề 8: Bất đẳng thức Erdos – Modell và một vài ứng dụng 9. Chuyên đề 9: Định lý Ptôlêmê và đặc trưng của tứ giác nội tiếp