Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG tỉnh Toán 12 năm học 2019 - 2020 sở GDĐT Bắc Ninh

Sáng thứ Năm ngày 28 tháng 05 năm 2020, sở Giáo dục và Đào tạo tỉnh Bắc Ninh tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán 12 năm học 2019 – 2020. Đề thi chọn HSG tỉnh Toán 12 năm học 2019 – 2020 sở GD&ĐT Bắc Ninh mã đề 898 gồm có 06 trang, đề có 50 câu trắc nghiệm, thời gian học sinh làm bài là 90 phút. Trích dẫn đề thi chọn HSG tỉnh Toán 12 năm học 2019 – 2020 sở GD&ĐT Bắc Ninh : + Trong không gian với hệ tọa độ Oxyz, cho ba mặt cầu có phương trình là x^2 + y^2 + z^2 = 1; (x – 2)^2 + (y – 1)^2 + (z + 2)^2 = 4 và (x + 4)^2 + y^2 + (z – 3)^2 = 16. Gọi M là điểm di động ở ngoài ba mặt cầu và X, Y, Z là các tiếp điểm của các tiếp tuyến vẽ từ M đến ba mặt cầu sao cho MX = MY = MZ. Khi đó tập hợp các điểm M là đường thẳng d cố định. Hỏi d vuông góc với mặt phẳng nào? [ads] + Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng 2020. Gọi (a) là mặt phẳng thay đổi vuông góc với AC và luôn có điểm chung với tất cả các mặt của hình lập phương. Gọi S, L lần lượt là diện tích và chu vi của thiết diện tạo bởi (a) với hình lập phương. Khẳng định nào sau đây đúng? A. S thay đổi, L không đổi. B. S không đổi, L không đổi. C. S thay đổi, L thay đổi. D. S không đổi, L thay đổi. + Trong không gian với hệ tọa độ Oxyz, cho hình hộp chữ nhật ABCD.A’B’C’D’ có A(0; 0; 0) trùng với O, B(2; 0; 0), D(0; 3; 0), A'(0; 0; 3). Gọi (H) là tập tất cả các điểm M(x; y; z) với x, y, z nguyên, nằm trên hoặc trong hình hộp chữ nhật. Chọn ngẫu nhiên hai điểm E, F phân biệt thuộc (H). Xác suất để trung điểm I của EF cũng nằm trong (H) bằng?

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi tỉnh Toán 12 năm 2021 - 2022 sở GDĐT Quảng Nam
Đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Quảng Nam mã đề 101 gồm 05 trang với 40 câu trắc nghiệm, thời gian làm bài 90 phút (không kể thời gian giao đề), kỳ thi được diễn ra vào ngày 22 tháng 03 năm 2022. Trích dẫn đề thi học sinh giỏi tỉnh Toán 12 năm 2021 – 2022 sở GD&ĐT Quảng Nam : + Có bao nhiêu số tự nhiên có bảy chữ số đôi một khác nhau, gồm ba chữ số lẻ, bốn chữ số chẵn mà trong đó có đúng một chữ số lẻ xen kẽ giữa hai chữ số chẵn? + Cho tứ diện đều ABCD có cạnh bằng 22 và tâm mặt cầu ngoại tiếp của nó là O. Mặt phẳng (P) song song với hai cạnh AB, CD và cách tâm O một khoảng bằng 1/2. Diện tích thiết diện của tứ diện ABCD cắt bởi mặt phẳng (P) bằng? + Trong không gian Oxyz, cho hai điểm A(-1;-5;2), B(3;3;-2) và đường thẳng d; hai điểm C, D thay đổi trên d sao cho CD = 63. Biết rằng khi C(a;b;c) (b < 2) thì tổng diện tích của tất cả các mặt của tứ diện ABCD đạt giá trị nhỏ nhất. Tính tổng a + b + c.
Đề thi học sinh giỏi tỉnh Toán 12 năm 2021 - 2022 sở GDĐT Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2021 – 2022 sở Giáo dục và Đào tạo UBND tỉnh Bắc Ninh; đề thi được biên soạn theo dạng đề 100% trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết mã đề 146. Trích dẫn đề thi học sinh giỏi tỉnh Toán 12 năm 2021 – 2022 sở GD&ĐT Bắc Ninh : + Trong không gian Oxyz cho điểm A 1 2 0 và mặt phẳng P x y z 2 2 3 0. Mặt phẳng 2x by cz d 0 (với b c d) đi qua điểm A, song song với trục Oy và vuông góc với P. Khi đó giá trị b c d bằng? + Cho hàm số y f x là hàm số có đạo hàm cấp hai liên tục trên. Gọi C là đồ thị của hàm số đã cho. Tiếp tuyến với đồ thị C tại các điểm có hoành độ x x 1 0 lần lượt tạo với trục hoành góc 0 0 30 45. Tiếp tuyến với đồ thị C tại các điểm có hoành độ x x 1 2 lần lượt song song với đường thẳng 1 d y x 2 1 và vuông góc với đường thẳng 2 d y x 5. + Ban đầu ta có một tam giác đều cạnh bằng 3 (hình 1). Tiếp đó ta chia mỗi cạnh của tam giác thành ba đoạn bằng nhau và thay mỗi đoạn ở giữa bằng hai đoạn bằng nó sao cho chúng tạo với đoạn bỏ đi một tam giác đều về phía bên ngoài để được hình như hình 2. Quay hình 2 xung quanh trục d ta được một khối tròn xoay có thể tích bằng?
Đề thi học sinh giỏi cấp tỉnh Toán 12 năm 2021 - 2022 sở GDĐT Bến Tre
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 Trung học Phổ thông (THPT) năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Bến Tre; kỳ thi được diễn ra vào sáng thứ Sáu ngày 11 tháng 03 năm 2022. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 12 năm 2021 – 2022 sở GD&ĐT Bến Tre : + Cho hàm số y có đồ thị (C), đường thẳng d: y = -x + m (m là tham số) và hai điểm M(3;4), N(4;5). Tìm các giá trị thực của m để đường thẳng d cắt (C) tại hai điểm phân biệt A, B sao cho bốn điểm A, B, M, N lập thành tứ giác lồi AMBN có diện tích bằng 2. + Cho tam giác ABC với điểm D trên cạnh BC (D khác B, D khác C) và điểm M trên đoạn AD (M khác A, M khác D). Gọi I, K lần lượt là trung điểm của MB, MC. Tia DI cắt AB tại điểm P, tia DK cắt AC tại điểm Q. Chứng minh: PQ // IK. + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 2a. Gọi E, F lần lượt là trung điểm của AB và BC, H là giao điểm của AF và DE. Biết SH vuông góc với mặt phẳng (ABCD) và góc giữa đường thẳng SA và mặt phẳng (ABCD) bằng 60°. Tính thể tích khối chóp S.ABCD và khoảng cách giữa hai đường thẳng SH, DF theo a.
Đề thi chọn học sinh giỏi Quốc gia môn Toán THPT năm học 2021 - 2022
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi Quốc gia môn Toán Trung học Phổ thông năm học 2021 – 2022; kỳ thi được diễn ra vào các ngày 04 và 05 tháng 03 năm 2022. Trích dẫn đề thi chọn học sinh giỏi Quốc gia môn Toán THPT năm học 2021 – 2022 : + Với mỗi cặp số nguyên dương (n;m) thoả mãn n < m, gọi s(n;m) là số các số nguyên dương thuộc đoạn [n;m] và nguyên tố cùng nhau với m. Tìm tất cả các số nguyên dương m >= 2 thoả mãn đồng thời hai điều kiện sau. + Cho P(x) và Q(x) là hai đa thức khác hằng, có hệ số là các số nguyên không âm, trong đó các hệ số của P(x) đều không vượt quá 2021 và Q(x) có ít nhất một hệ số lớn hơn 2021. Giả sử P(2022) = Q(2022) và P(x), Q(x) có chung nghiệm hữu tỷ p/q khác 0 (p và q nguyên tố cùng nhau). Chứng minh rằng với mọi n. + Gieo 4 con súc sắc cân đối, đồng chất. Ký hiệu x là số chấm trên mặt xuất hiện của con súc sắc thứ i. a) Tính số các bộ có thể có. b) Tính xác suất để có một số trong bằng tổng của ba số còn lại. c) Tính xác suất để có thể chia thành hai nhóm có tổng bằng nhau.