Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Bách Việt TP HCM

Nội dung Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Bách Việt TP HCM Bản PDF Nhằm giúp các em học sinh lớp 11 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 11 sắp tới, Sytu giới thiệu đến các em đề thi học kì 2 Toán lớp 11 năm học 2019 – 2020 trường THPT Bách Việt, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán lớp 11 năm 2019 – 2020 trường THPT Bách Việt – TP HCM : + Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc (ABCD), SA = a2. a. Chứng minh: BD vuông góc (SAC), (SAB) vuông góc (SAD). b. Gọi H là hình chiếu vuông góc của A trên SB. Chứng minh BC vuông góc AH. c. Gọi O là giao điểm của hai đường chéo hình vuông. Tính góc giữa SO và (ABCD). d. Tính khoảng cách giữa hai đường thẳng SB và AD. e. Tính khoảng cách từ O đến mặt phẳng (SBD). + Chứng minh rằng phương trình có ít nhất hai nghiệm thuộc khoảng (0;2). + Cho hàm số có đồ thị. a. Viết phương trình tiếp tuyến của (C) biết tiếp điểm có hoành độ bằng -2. b. Giải phương trình f'(cosx) = 0.

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường Diên Hồng TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường Diên Hồng TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề thi học kì 2 Toán lớp 11 năm học 2019 – 2020 trường THCS – THPT Diên Hồng, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán lớp 11 năm 2019 – 2020 trường THCS – THPT Diên Hồng – TP HCM : + Cho hình chóp S.ABCD có đáy là hình vuông tâm O với độ dài cạnh là 2a. Cạnh bên SA vuông góc đáy có độ dài SA a 3. a/ Chứng minh rằng: BC SAB và SBD SAC. b/ Xác định và tính góc giữa SO và mặt đáy (ABCD). c/ Xác định và tính khoảng cách từ điểm B đến (SCD). + Viết phương trình tiếp tuyến của đồ thị hàm số 3 2 C y x x 3 2 biết tiếp tuyến vuông góc với đường thẳng 1 : 2020. + Chứng minh rằng phương trình 2020 2019 m x x x 2019 2020 2 4039 0 luôn có nghiệm với mọi tham số m.
Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường chuyên Lê Hồng Phong TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường chuyên Lê Hồng Phong TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề thi học kì 2 Toán lớp 11 năm học 2019 – 2020 trường THPT chuyên Lê Hồng Phong, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết.
Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Cần Thạnh TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Cần Thạnh TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề thi học kì 2 Toán lớp 11 năm học 2019 – 2020 trường THPT Cần Thạnh, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán lớp 11 năm 2019 – 2020 trường THPT Cần Thạnh – TP HCM : + Tính đạo hàm của các hàm số sau. + Viết phương trình tiếp tuyến của (C): 2 1 3 x y x biết tiếp tuyến song song với đường thẳng 1 : 1 7 d. + Viết phương trình tiếp tuyến với đồ thị hàm số 3 2 y x 3x tại điểm có hoành độ bằng -1.
Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Bùi Thị Xuân TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Bùi Thị Xuân TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề thi học kì 2 Toán lớp 11 năm học 2019 – 2020 trường THPT Bùi Thị Xuân, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán lớp 11 năm 2019 – 2020 trường THPT Bùi Thị Xuân – TP HCM : + Một vật chuyển động có phương trình trong đó t (tính bằng giây) là thời gian vật chuyển động kể từ lúc bắt đầu chuyển động và S (tính bằng mét) là quãng đường vật đi được trong khoảng thời gian t. Tính vận tốc và gia tốc của vật tại thời điểm t s. + Cho hàm số có đồ thị C. Viết phương trình tiếp tuyến của đồ thị C, biết tiếp tuyến song song đường thẳng d y x 9 6. + Chứng minh phương trình 2 4 m m x x 2 6 2 0 luôn có nghiệm với mọi giá trị thực của tham số m.